ChipFind - документация

Электронный компонент: BAV70LT3

Скачать:  PDF   ZIP
Monolithic Dual Switching Diode
Common Cathode
MAXIMUM RATINGS
(EACH DIODE)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
70
Vdc
Forward Current
IF
200
mAdc
Peak Forward Surge Current
IFM(surge)
500
mAdc
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Total Device Dissipation FR5 Board(1)
TA = 25
C
Derate above 25
C
PD
225
1.8
mW
mW/
C
Thermal Resistance, Junction to Ambient
R
q
JA
556
C/W
Total Device Dissipation
Alumina Substrate,(2) TA = 25
C
Derate above 25
C
PD
300
2.4
mW
mW/
C
Thermal Resistance, Junction to Ambient
R
q
JA
417
C/W
Junction and Storage Temperature
TJ, Tstg
55 to +150
C
DEVICE MARKING
BAV70LT1 = A4
ELECTRICAL CHARACTERISTICS
(TA = 25
C unless otherwise noted) (EACH DIODE)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Reverse Breakdown Voltage
(I(BR) = 100
Adc)
V(BR)
70
--
Vdc
Reverse Voltage Leakage Current (Note 3)
(VR = 25 Vdc, TJ = 150
C)
(VR = 70 Vdc)
(VR = 70 Vdc, TJ = 150
C)
IR
--
--
--
60
2.5
100
Adc
Diode Capacitance
(VR = 0, f = 1.0 MHz)
CD
--
1.5
pF
Forward Voltage
(IF = 1.0 mAdc)
(IF = 10 mAdc)
(IF = 50 mAdc)
(IF = 150 mAdc)
VF
--
--
--
--
715
855
1000
1250
mVdc
Reverse Recovery Time
RL = 100
(IF = IR = 10 mAdc, VR = 5.0 Vdc, IR(REC) = 1.0 mAdc) (Figure 1)
trr
--
6.0
ns
1. FR5 = 1.0
0.75
0.062 in.
2. Alumina = 0.4
0.3
0.024 in. 99.5% alumina.
3. For each individual diode while second diode is unbiased.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
ON Semiconductort
Semiconductor Components Industries, LLC, 2001
November, 2001 Rev. 2
1
Publication Order Number:
BAV70LT1/D
BAV70LT1
1
2
3
CASE 31808, STYLE 9
SOT23 (TO236AB)
3
CATHODE
ANODE
1
2
ANODE
BAV70LT1
http://onsemi.com
2
Notes: 1. A 2.0 k
variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes:
2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes:
3. tp trr
+10 V
2.0 k
820
0.1
F
D.U.T.
VR
100
H
0.1
F
50
OUTPUT
PULSE
GENERATOR
50
INPUT
SAMPLING
OSCILLOSCOPE
tr
tp
t
10%
90%
IF
IR
trr
t
iR(REC) = 1.0 mA
OUTPUT PULSE
(IF = IR = 10 mA; MEASURED
at iR(REC) = 1.0 mA)
IF
INPUT SIGNAL
Figure 1. Recovery Time Equivalent Test Circuit
100
0.2
0.4
VF, FORWARD VOLTAGE (VOLTS)
0.6
0.8
1.0
1.2
10
1.0
0.1
TA = 85
C
10
0
VR, REVERSE VOLTAGE (VOLTS)
1.0
0.1
0.01
0.001
10
20
30
40
50
1.0
0
VR, REVERSE VOLTAGE (VOLTS)
0.9
0.8
0.7
0.6
C D
, DIODE CAP
ACIT
ANCE (pF)
2
4
6
8
I F
, FOR
W
ARD CURRENT
(mA)
Figure 2. Forward Voltage
Figure 3. Leakage Current
Figure 4. Capacitance
TA = -40
C
TA = 25
C
TA = 150
C
TA = 125
C
TA = 85
C
TA = 55
C
TA = 25
C
I R
, REVERSE CURRENT
(
A)
Curves Applicable to Each Anode
BAV70LT1
http://onsemi.com
3
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values
into the equation for an ambient temperature TA of 25
C,
one can calculate the power dissipation of the device which
in this case is 225 milliwatts.
INFORMATION FOR USING THE SOT23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the
total design. The footprint for the semiconductor packages
must be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
SOT23
mm
inches
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
SOT23 POWER DISSIPATION
PD =
TJ(max) TA
R
JA
PD =
150
C 25
C
556
C/W
= 225 milliwatts
The power dissipation of the SOT23 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipa-
tion. Power dissipation for a surface mount device is deter-
mined by TJ(max), the maximum rated junction temperature
of the die, R
JA, the thermal resistance from the device
junction to ambient, and the operating temperature, TA.
Using the values provided on the data sheet for the SOT23
package, PD can be calculated as follows:
The 556
C/W for the SOT23 package assumes the use
of the recommended footprint on a glass epoxy printed
circuit board to achieve a power dissipation of 225 milli-
watts. There are other alternatives to achieving higher
power dissipation from the SOT23 package. Another
alternative would be to use a ceramic substrate or an
aluminum core board such as Thermal Clad
TM
. Using a
board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the
rated temperature of the device. When the entire device is
heated to a high temperature, failure to complete soldering
within a short time could result in device failure. There-
fore, the following items should always be observed in
order to minimize the thermal stress to which the devices
are subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100
C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference shall be a maximum of 10
C.
The soldering temperature and time shall not exceed
260
C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5
C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied
during cooling.
* Soldering a device without preheating can cause exces-
sive thermal shock and stress which can result in damage
to the device.
BAV70LT1
http://onsemi.com
4
PACKAGE DIMENSIONS
CASE 31808
ISSUE AF
SOT23 (TO236AB)
D
J
K
L
A
C
B S
H
G
V
3
1
2
DIM
A
MIN
MAX
MIN
MAX
MILLIMETERS
0.1102 0.1197
2.80
3.04
INCHES
B 0.0472 0.0551
1.20
1.40
C 0.0350 0.0440
0.89
1.11
D 0.0150 0.0200
0.37
0.50
G 0.0701 0.0807
1.78
2.04
H 0.0005 0.0040
0.013
0.100
J 0.0034 0.0070
0.085
0.177
K 0.0140 0.0285
0.35
0.69
L 0.0350 0.0401
0.89
1.02
S 0.0830 0.1039
2.10
2.64
V 0.0177 0.0236
0.45
0.60
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4321 NishiGotanda, Shinagawaku, Tokyo, Japan 1410031
Phone: 81357402700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
BAV70LT1/D
Thermal Clad is a trademark of the Bergquist Company.
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 8002829855 Toll Free USA/Canada