ChipFind - документация

Электронный компонент: MC33072D

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
Semiconductor Components Industries, LLC, 1999
October, 1999 Rev. 2
1
Publication Order Number:
MC34071/D
MC34071,2,4,A
MC33071,2,4,A
High Slew Rate, Wide
Bandwidth, Single Supply
Operational Amplifiers
Quality bipolar fabrication with innovative design concepts are
employed for the MC33071/72/74, MC34071/72/74 series of
monolithic operational amplifiers. This series of operational
amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/
s slew rate
and fast setting time without the use of JFET device technology.
Although this series can be operated from split supplies, it is
particularly suited for single supply operation, since the common
mode input voltage range includes ground potential (VEE). With A
Darlington input stage, this series exhibits high input resistance, low
input offset voltage and high gain. The all NPN output stage,
characterized by no deadband crossover distortion and large output
voltage swing, provides high capacitance drive capability, excellent
phase and gain margins, low open loop high frequency output
impedance and symmetrical source/sink AC frequency response.
The MC33071/72/74, MC34071/72/74 series of devices are
available in standard or prime performance (A Suffix) grades and are
specified over the commercial, industrial/vehicular or military
temperature ranges. The complete series of single, dual and quad
operational amplifiers are available in plastic DIP, SOIC and TSSOP
surface mount packages.
Wide Bandwidth: 4.5 MHz
High Slew Rate: 13 V/
s
Fast Settling Time: 1.1
s to 0.1%
Wide Single Supply Operation: 3.0 V to 44 V
Wide Input Common Mode Voltage Range: Includes Ground (VEE)
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
Large Output Voltage Swing: 14.7 V to +14 V (with
15 V
Supplies)
Large Capacitance Drive Capability: 0 pF to 10,000 pF
Low Total Harmonic Distortion: 0.02%
Excellent Phase Margin: 60
Excellent Gain Margin: 12 dB
Output Short Circuit Protection
ESD Diodes/Clamps Provide Input Protection for Dual and Quad
P SUFFIX
CASE 626
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 17 of this data sheet.
ORDERING INFORMATION
PIN CONNECTIONS
(Single, Top View)
(Dual, Top View)
Offset Null
VEE
NC
VCC
Output
Offset Null
Inputs
VEE
Inputs 1
Inputs 2
Output 2
Output 1
VCC
1
2
3
4
8
7
6
5
+
+
1
2
3
4
8
7
6
5
+
1
8
1
8
SO8
D SUFFIX
CASE 751
Inputs 1
Output 1
VCC
Inputs 2
Output 2
Output 4
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
4
2
3
1
PIN CONNECTIONS
1
2
3
4
5
6
7
8
9
10
11
12
13
14

+

+
+
+
14
1
14
1
14
1
P SUFFIX
CASE 646
SO14
D SUFFIX
CASE 751A
TSSOP14
DTB SUFFIX
CASE 948G
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
2
Offset Null
(MC33071, MC34071 only)
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q17
Q18
D2
C2
D3
R6
R7
R8
R5
Q15
Q16
Q14
Q13
Q11
Q10
R2
C1
R1
Q9
Q8
Q12
D1
R3
R4
Inputs
VCC
Output
Current
Limit
VEE/Gnd
Base
Current
Cancellation
+
Q19
Bias
Representative Schematic Diagram
(Each Amplifier)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Supply Voltage (from VEE to VCC)
VS
+44
V
Input Differential Voltage Range
VIDR
Note 1
V
Input Voltage Range
VIR
Note 1
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Operating Junction Temperature
TJ
+150
C
Storage Temperature Range
Tstg
60 to +150
C
NOTES: 1. Either or both input voltages should not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded (see Figure 1).
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = 15 V, RL = connected to ground, unless otherwise noted. See Note 3 for
TA = Tlow to Thigh)
A Suffix
NonSuffix
Characteristics
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage (RS = 100
, VCM = 0 V, VO = 0 V)
VCC = +15 V, VEE = 15 V, TA = +25
C
VCC = +5.0 V, VEE = 0 V, TA = +25
C
VCC = +15 V, VEE = 15 V, TA = Tlow to Thigh
VIO
--
--
--
0.5
0.5
--
3.0
3.0
5.0
--
--
--
1.0
1.5
--
5.0
5.0
7.0
mV
Average Temperature Coefficient of Input Offset Voltage
RS = 10
, VCM = 0 V, VO = 0 V,
TA = Tlow to Thigh
VIO/
T
--
10
--
--
10
--
V/
C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25
C
TA = Tlow to Thigh
IIB
--
--
100
--
500
700
--
--
100
--
500
700
nA
Input Offset Current (VCM = 0 V, VO = 0V)
TA = +25
C
TA = Tlow to Thigh
IIO
--
--
6.0
--
50
300
--
--
6.0
--
75
300
nA
Input Common Mode Voltage Range
TA = +25
C
TA = Tlow to Thigh
VICR
VEE to (VCC 1.8)
VEE to (VCC 2.2)
VEE to (VCC 1.8)
VEE to (VCC 2.2)
V
Large Signal Voltage Gain (VO =
10 V, RL = 2.0 k
)
TA = +25
C
TA = Tlow to Thigh
AVOL
50
25
100
--
--
--
25
20
100
--
--
--
V/mV
Output Voltage Swing (VID =
1.0 V)
VCC = +5.0 V, VEE = 0 V, RL = 2.0 k
, TA = +25
C
VCC = +15 V, VEE = 15 V, RL = 10 k
, TA = +25
C
VCC = +15 V, VEE = 15 V, RL = 2.0 k
,
TA = Tlow to Thigh
VOH
3.7
13.6
13.4
4.0
14
--
--
--
--
3.7
13.6
13.4
4.0
14
--
--
--
--
V
VCC = +5.0 V, VEE = 0 V, RL = 2.0 k
, TA = +25
C
VCC = +15 V, VEE = 15 V, RL = 10 k
, TA = +25
C
VCC = +15 V, VEE = 15 V, RL = 2.0 k
,
TA = Tlow to Thigh
VOL
--
--
--
0.1
14.7
--
0.3
14.3
13.5
--
--
--
0.1
14.7
--
0.3
14.3
13.5
V
Output Short Circuit Current (VID = 1.0 V, VO = 0 V,
TA = 25
C)
Source
Sink
ISC
10
20
30
30
--
--
10
20
30
30
--
--
mA
Common Mode Rejection
RS
10 k
, VCM = VICR, TA = 25
C
CMR
80
97
--
70
97
--
dB
Power Supply Rejection (RS = 100
)
VCC/VEE = +16.5 V/16.5 V to +13.5 V/13.5 V,
TA = 25
C
PSR
80
97
--
70
97
--
dB
Power Supply Current (Per Amplifier, No Load)
VCC = +5.0 V, VEE = 0 V, VO = +2.5 V, TA = +25
C
VCC = +15 V, VEE = 15 V, VO = 0 V, TA = +25
C
VCC = +15 V, VEE = 15 V, VO = 0 V,
TA = Tlow to Thigh
ID
--
--
--
1.6
1.9
--
2.0
2.5
2.8
--
--
--
1.6
1.9
--
2.0
2.5
2.8
mA
NOTES: 3. Tlow = 40
C for MC33071, 2, 4, /A
Thigh = +85
C for MC33071, 2, 4, /A
= 0
C for MC34071, 2, 4, /A
= +70
C for MC34071, 2, 4, /A
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = 15 V, RL = connected to ground. TA = +25
C, unless otherwise noted.)
A Suffix
NonSuffix
Characteristics
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Slew Rate (Vin = 10 V to +10 V, RL = 2.0 k
, CL = 500 pF)
AV = +1.0
AV = 1.0
SR
8.0
--
10
13
--
--
8.0
--
10
13
--
--
V/
s
Setting Time (10 V Step, AV = 1.0)
To 0.1% (+1/2 LSB of 9Bits)
To 0.01% (+1/2 LSB of 12Bits)
ts
--
--
1.1
2.2
--
--
--
--
1.1
2.2
--
--
s
Gain Bandwidth Product (f = 100 kHz)
GBW
3.5
4.5
--
3.5
4.5
--
MHz
Power Bandwidth
AV = +1.0, RL = 2.0 k
, VO = 20 Vpp, THD = 5.0%
BW
--
160
--
--
160
--
kHz
Phase margin
RL = 2.0 k
RL = 2.0 k
, CL = 300 pF
fm
--
--
60
40
--
--
--
--
60
40
--
--
Deg
Gain Margin
RL = 2.0 k
RL = 2.0 k
, CL = 300 pF
Am
--
--
12
4.0
--
--
--
--
12
4.0
--
--
dB
Equivalent Input Noise Voltage
RS = 100
, f = 1.0 kHz
en
--
32
--
--
32
--
nV/ Hz
Equivalent Input Noise Current
f = 1.0 kHz
in
--
0.22
--
--
0.22
--
pA/ Hz
Differential Input Resistance
VCM = 0 V
Rin
--
150
--
--
150
--
M
Differential Input Capacitance
VCM = 0 V
Cin
--
2.5
--
--
2.5
--
pF
Total Harmonic Distortion
AV = +10, RL = 2.0 k
, 2.0 Vpp
VO
20 Vpp, f = 10 kHz
THD
--
0.02
--
--
0.02
--
%
Channel Separation (f = 10 kHz)
--
--
120
--
--
120
--
dB
Open Loop Output Impedance (f = 1.0 MHz)
|ZO|
--
30
--
--
30
--
W
Figure 1. Power Supply Configurations
Figure 2. Offset Null Circuit
Single Supply
Split Supplies
1
2
3
4
VCC
VEE
VCC
VCC
VEE
VEE
1
2
3
4
3.0 V to 44 V
VCC+|VEE|
44 V
Offset nulling range is approximately
80 mV with a 10 k
potentiometer (MC33071, MC34071 only).
VCC
VEE
1
2
3
4
5
6
7
10 k
+
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
5
RL Connected
to Ground TA = 25
C
RL = 10 k
RL = 2.0 k
V
O
, OUTPUT
VOL
T
AGE SWING (V
pp
)
Figure 3. Maximum Power Dissipation versus
Temperature for Package Types
Figure 4. Input Offset Voltage versus
Temperature for Representative Units
Figure 5. Input Common Mode Voltage
Range versus Temperature
Figure 6. Normalized Input Bias Current
versus Temperature
Figure 7. Normalized Input Bias Current versus
Input Common Mode Voltage
Figure 8. Split Supply Output Voltage
Swing versus Supply Voltage
TA, AMBIENT TEMPERATURE (
C)
D
P
,
MAXIMUM POWER DISSIP
A
TION (mW)
55 40 20
0
20
40
60
80
100 120 140 160
8 & 14 Pin Plastic Pkg
SO14 Pkg
SO8 Pkg
TA, AMBIENT TEMPERATURE (
C)
IO
V
,
INPUT

OFFSET
VOL
T
AGE
(mV)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
VCM = 0
TA, AMBIENT TEMPERATURE (
C)
ICR
V
,
INPUT
COMMON MODE VOL
T
AGE RANGE (V)
55
25
0
25
50
75
100
125
VCC
VCC/VEE = +1.5 V/ 1.5 V to +22 V/ 22 V
VEE
TA, AMBIENT TEMPERATURE (
C)
IB
I
,
INPUT
BIAS CURRENT

(NORMALIZED)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
VCM = 0
VIC, INPUT COMMON MODE VOLTAGE (V)
12
8.0
4.0
0
4.0
8.0
12
VCC = +15 V
VEE = 15 V
TA = 25
C
VCC, |VEE|, SUPPLY VOLTAGE (V)
0
5.0
10
15
20
25
V
IB
I
,
INPUT
BIAS CURRENT

(NORMALIZED)
2400
2000
1600
1200
800
400
0
4.0
2.0
0
2.0
4.0
VCC
VCC 0.8
VCC 1.6
VCC 2.4
VEE +0.01
VEE
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.4
1.2
1.0
0.8
0.6
50
40
30
20
10
0
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
6
VCC
VCC = +15 V
RL to VCC
TA = 25
C
Gnd
VCC
VCC = +15 V
RL = Gnd
TA = 25
C
Gnd
V
O
, OUTPUT
VOL
T
AGE SWING (V
pp
)
Figure 9. Single Supply Output Saturation
versus Load Resistance to VCC
60
Figure 10. Split Supply Output Saturation
versus Load Current
Figure 11. Single Supply Output Saturation
versus Load Resistance to Ground
Figure 12. Output Short Circuit Current
versus Temperature
Figure 13. Output Impedance
versus Frequency
Figure 14. Output Voltage Swing
versus Frequency
0
5.0
10
15
20
IL, LOAD CURRENT (
mA)
VCC
VEE
Sink
VCC/VEE = +5.0 V/ 5.0 V to +22 V/ 22 V
TA = 25
C
Source
RL, LOAD RESISTANCE TO GROUND (
)
100
1.0 k
10 k
100 k
sat
V , OUTPUT
SA
TURA
TION
VOL
T
AGE
(V)
RL, LOAD RESISTANCE TO VCC (
)
100
1.0 k
10 k
100 k
TA, AMBIENT TEMPERATURE (
C)
SCI
,
OUTPUT

CURRENT

(mA)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
RL
0.1
Vin = 1.0 V
Sink
Source
f, FREQUENCY (Hz)
O
Z
,

OUTPUT
IMPEDANCE (
)
1.0 k
10 k
100
1.0 M
10 M
AV = 1000
AV = 100
AV = 10
AV = 1.0
VCC = +15 V
VEE = 15 V
VCM = 0
VO = 0
IO =
0.5 mA
TA = 25
C
f, FREQUENCY (Hz)
3.0 k
10 k
30 k
100 k
300 k
1.0 M
3.0 M
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k
THD
1.0%
TA = 25
C
sat
V , OUTPUT
SA
TURA
TION
VOL
T
AGE
(V)
sat
V , OUTPUT
SA
TURA
TION
VOL
T
AGE
(V)
VCC
VCC 1.0
VCC 2.0
VEE +2.0
VEE +1.0
VEE
VCC2.0
VCC4.0
VCC
0.2
0.1
0
0
0.4
0.8
2.0
1.0
50
40
30
20
10
0
50
40
30
20
10
0
28
24
20
16
12
8.0
4.0
0
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
7
1. Phase RL = 2.0 k
2. Phase RL = 2.0 k, CL = 300 pF
3. Gain RL = 2.0 k
4. Gain RL = 2.0 k, CL = 300 pF
VCC = +15 V
VEE = 15 V
VO = 0 V
TA = 25
C
Phase
Margin = 60
Gain
Margin = 12 dB
3
4
1
2
Gain
VCC = +15 V
VEE = 15 V
VO = 0 V
RL = 2.0 k
TA = 25
C
Phase
Phase
Margin
= 60
Figure 15. Total Harmonic Distortion
versus Frequency
Figure 16. Total Harmonic Distortion
versus Output Voltage Swing
Figure 17. Open Loop Voltage Gain
versus Temperature
Figure 18. Open Loop Voltage Gain and
Phase versus Frequency
Figure 19. Open Loop Voltage Gain and
Phase versus Frequency
Figure 20. Normalized Gain Bandwidth
Product versus Temperature
f, FREQUENCY (Hz)
10
100
1.0 k
10 k
100 k
AV = 1000
AV = 100
AV = 10
AV = 1.0
VCC = +15 V
VEE = 15 V
VO = 2.0 Vpp
RL = 2.0 k
TA = 25
C
VO, OUTPUT VOLTAGE SWING (Vpp)
THD,
T
O
T
A
L
HARMONIC DIST
OR
TION (%)
0
4.0
8.0
12
16
20
VCC = +15 V
VEE = 15 V
RL = 2.0 k
TA = 25
C
AV = 1000
AV = 100
AV = 10
AV = 1.0
TA, AMBIENT TEMPERATURE (
C)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
VO= 10 V to +10 V
RL = 10 k
f
10Hz
f, FREQUENCY (Hz)
1.0
10
100
1.0 k
10 k
100 k
1.0 M
10 M
100 M
, EXCESS PHASE (DEGREES)
, EXCESS PHASE (DEGREES)
f, FREQUENCY (MHz)
1.0
2.0
3.0
5.0
7.0
10
20
30
TA, AMBIENT TEMPERATURE (
C)
GBW
, GAIN BANDWIDTH PRODUCT

(NORMALIED)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
RL = 2.0 k
VOL
A,

O
P
E
N
LOO
P V
OL
T
AGE

GAI
N
(
d
B)
0.4
0.3
0.2
0.1
0
4.0
3.0
2.0
1.0
0
116
112
108
104
100
96
100
80
60
40
20
0
20
10
0
10
20
30
40
1.15
1.1
1.05
1.0
0.95
0.9
0.85
0
45
90
135
180
100
120
140
160
180
THD
,
T
O
T
AL
H
AR
M
O
N
IC
D
IS
T
OR
T
IO
N
(
%
)
VOL
A,

O
P
E
N
LOO
P V
OL
T
AGE

GAI
N
(
d
B)
VOL
A
,
OPEN LOOP
VOL
T
AGE GAIN (dB)
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
8
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k to
R
VO = 10 V to +10 V
TA = 25
C
Figure 21. Percent Overshoot versus
Load Capacitance
Figure 22. Phase Margin versus
Load Capacitance
Figure 23. Gain Margin versus Load Capacitance
Figure 24. Phase Margin versus Temperature
Figure 25. Gain Margin versus Temperature
Figure 26. Phase Margin and Gain Margin
versus Differential Source Resistance
PERCENT
OVERSHOOT
CL, LOAD CAPACITANCE (pF)
10
100
1.0 k
10 k
VCC = +15 V
VEE = 15 V
RL = 2.0 k
VO = 10 V to +10 V
TA = 25
C
CL, LOAD CAPACITANCE (pF)
, PHASE MARGIN (DEGREES)
m
10
100
1.0 k
10 k
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k to
VO = 10 V to +10 V
TA = 25
C
CL, LOAD CAPACITANCE (pF)
m
A
,
GAIN MARGIN (dB)
10
100
1.0 k
10 k
, PHASE MARGIN (DEGREES)
m
TA, AMBIENT TEMPERATURE (
C)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k to
VO = 10 V to +10 V
CL = 10 pF
CL = 100 pF
CL = 1,000 pF
CL = 10,000 pF
TA, AMBIENT TEMPERATURE (
C)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k to
VO = 10 V to +10 V
CL = 10 pF
CL = 1,000 pF
m
A
,
GAIN MARGIN (dB)
CL = 100 pF
CL = 10,000 pF
Phase
m
A
,
GAIN MARGIN (dB)
RT, DIFFERENTIAL SOURCE RESISTANCE (
)
1.0
100
1.0 k
10 k
10
100 k
R1
R2
VO
+
VCC = +15 V
VEE = 15 V
RT = R1 + R2
AV = +100
VO = 0 V
TA = 25
C
Gain
, PHASE MARGIN (DEGREES)
m
100
80
60
40
20
0
70
60
50
40
30
20
10
0
14
12
10
8.0
6.0
2.0
0
4.0
80
60
40
20
0
16
12
8.0
4.0
0
12
10
8.0
6.0
4.0
2.0
0
60
50
40
30
20
10
0
70
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
9
Figure 27. Normalized Slew Rate
versus Temperature
Figure 28. Output Settling Time
Figure 29. Small Signal Transient Response
Figure 30. Large Signal Transient Reponse
Figure 31. Common Mode Rejection
versus Frequency
Figure 32. Power Supply Rejection
versus Frequency
TA, AMBIENT TEMPERATURE (
C)
SR,

SLE
W
RA
T
E

(
N
OR
M
ALI
Z
E
D
)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k
CL = 500 pF
ts, SETTLING TIME (
s)
O
V
,
OUTPUT
VOL
T
AGE SWING FROM 0 V (V)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VCC = +15 V
VEE = 15 V
AV = 1.0
TA = 25
C
10 mV
1.0 mV
1.0 mV
Compensated
Uncompensated
10 mV
1.0 mV
1.0 mV
50 mV/DIV
2.0
s/DIV
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k
CL = 300 pF
TA = 25
C
5.0 V/DIV
1.0
s/DIV
f, FREQUENCY (Hz)
C
M
R,

CO
MM
O
N M
O
D
E

RE
J
EC
T
IO
N
(
d
B)
0.1
1.0
10
100
1.0 k
10 k
100 k
1.0 M
10 M
TA = 25
C
TA = 125
C
TA = 55
C
VCC = +15 V
VEE = 15 V
VCM = 0 V
VCM =
1.5 V
f, FREQUENCY (Hz)
PSR, POWER SUPPL
Y
REJECTION (dB)
0.1
1.0
10
100
1.0 k
10 k
100 k
1.0 M 10 M
VCC = +15 V
VEE = 15 V
TA = 25
C
(
VCC = +1.5 V)
(
VEE = +1.5 V)
+PSR
PSR
VCC = +15 V
VEE = 15 V
AV = +1.0
RL = 2.0 k
CL = 300 pF
TA = 25
C
1.15
1.1
1.05
1.0
0.95
0.9
0.85
10
5.0
0
5.0
10
0
0
100
80
60
40
20
0
100
80
60
40
20
0
VCM
VO
ADM
CMR = 20 Log
VCM
VO
x ADM
+
VO
ADM
+
VCC
VEE
VO/ADM
VCC
+PSR = 20 Log
VO/ADM
VEE
PSR = 20 Log
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
10
Figure 33. Supply Current versus
Supply Voltage
Figure 34. Power Supply Rejection
versus Temperature
Figure 35. Channel Separation versus Frequency
Figure 36. Input Noise versus Frequency
VCC, |VEE|, SUPPLY VOLTAGE (V)
CCI
, SUPPL
Y

CURRENT

(mA)
0
5.0
10
15
20
25
TA = 25
C
TA = 125
C
TA = 55
C
TA, AMBIENT TEMPERATURE (
C)
PSR, POWER SUPPL
Y
REJECTION (dB)
55
25
0
25
50
75
100
125
VCC = +15 V
VEE = 15 V
(
VCC = +1.5 V)
(
VEE = +1.5 V)
+PSR
PSR
f, FREQUENCY (kHz)
CHANNEL
SEP
ARA
TION
(dB)
10
20
30
50
70
100
200
300
VCC = +15 V
VEE = 15 V
TA = 25
C
f, FREQUENCY (kHz)
n
e
,
INPUT
NOICE VOL
T
AGE (
i
,

INPUT

NOISE
CURRENT

(pA
)
10
100
1.0 k
10 k
100 k
nV
Hz
)
Hz
n
Voltage
Current
9.0
8.0
7.0
6.0
5.0
4.0
105
95
85
75
65
120
100
80
60
40
20
0
70
60
50
40
30
20
10
0
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0
VO
ADM
+
VCC
VEE
VO/ADM
VCC
+PSR = 20 Log
VO/ADM
VEE
PSR = 20 Log
VCC = +15 V
VEE = 15 V
VCM = 0
TA = 25
C
APPLICATIONS INFORMATION
CIRCUIT DESCRIPTION/PERFORMANCE FEATURES
Although the bandwidth, slew rate, and settling time of the
MC34071 amplifier series are similar to op amp products
utilizing JFET input devices, these amplifiers offer other
additional distinct advantages as a result of the PNP
transistor differential input stage and an all NPN transistor
output stage.
Since the input common mode voltage range of this input
stage includes the VEE potential, single supply operation is
feasible to as low as 3.0 V with the common mode input
voltage at ground potential.
The input stage also allows differential input voltages up
to
44 V, provided the maximum input voltage range is not
exceeded. Specifically, the input voltages must range
between VEE and VCC supply voltages as shown by the
maximum rating table. In practice, although not
recommended, the input voltages can exceed the VCC
voltage by approximately 3.0 V and decrease below the VEE
voltage by 0.3 V without causing product damage, although
output phase reversal may occur. It is also possible to source
up to approximately 5.0 mA of current from VEE through
either inputs clamping diode without damage or latching,
although phase reversal may again occur.
If one or both inputs exceed the upper common mode
voltage limit, the amplifier output is readily predictable and
may be in a low or high state depending on the existing input
bias conditions.
Since the input capacitance associated with the small
geometry input device is substantially lower (2.5 pF) than
the typical JFET input gate capacitance (5.0 pF), better
frequency response for a given input source resistance can
be achieved using the MC34071 series of amplifiers. This
performance feature becomes evident, for example, in fast
settling DtoA current to voltage conversion applications
where the feedback resistance can form an input pole with
the input capacitance of the op amp. This input pole creates
a 2nd order system with the single pole op amp and is
therefore detrimental to its settling time. In this context,
lower input capacitance is desirable especially for higher
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
11
values of feedback resistances (lower current DACs). This
input pole can be compensated for by creating a feedback
zero with a capacitance across the feedback resistance, if
necessary, to reduce overshoot. For 2.0 k
of feedback
resistance, the MC34071 series can settle to within 1/2 LSB
of 8 bits in 1.0
s, and within 1/2 LSB of 12bits in 2.2
s
for a 10 V step. In a inverting unity gain fast settling
configuration, the symmetrical slew rate is
13 V/
s. In the
classic noninverting unity gain configuration, the output
positive slew rate is +10 V/
s, and the corresponding
negative slew rate will exceed the positive slew rate as a
function of the fall time of the input waveform.
Since the bipolar input device matching characteristics
are superior to that of JFETs, a low untrimmed maximum
offset voltage of 3.0 mV prime and 5.0 mV downgrade can
be economically offered with high frequency performance
characteristics. This combination is ideal for low cost
precision, high speed quad op amp applications.
The all NPN output stage, shown in its basic form on the
equivalent circuit schematic, offers unique advantages over
the more conventional NPN/PNP transistor Class AB
output stage. A 10 k
load resistance can swing within 1.0
V of the positive rail (VCC), and within 0.3 V of the negative
rail (VEE), providing a 28.7 Vpp swing from
15 V supplies.
This large output swing becomes most noticeable at lower
supply voltages.
The positive swing is limited by the saturation voltage of
the current source transistor Q7, and VBE of the NPN pull up
transistor Q17, and the voltage drop associated with the short
circuit resistance, R7. The negative swing is limited by the
saturation voltage of the pulldown transistor Q16, the
voltage drop ILR6, and the voltage drop associated with
resistance R7, where IL is the sink load current. For small
valued sink currents, the above voltage drops are negligible,
allowing the negative swing voltage to approach within
millivolts of VEE. For large valued sink currents (>5.0 mA),
diode D3 clamps the voltage across R6, thus limiting the
negative swing to the saturation voltage of Q16, plus the
forward diode drop of D3 (
VEE +1.0 V). Thus for a given
supply voltage, unprecedented peaktopeak output voltage
swing is possible as indicated by the output swing
specifications.
If the load resistance is referenced to VCC instead of
ground for single supply applications, the maximum
possible output swing can be achieved for a given supply
voltage. For light load currents, the load resistance will pull
the output to VCC during the positive swing and the output
will pull the load resistance near ground during the negative
swing. The load resistance value should be much less than
that of the feedback resistance to maximize pull up
capability.
Because the PNP output emitterfollower transistor has
been eliminated, the MC34071 series offers a 20 mA
minimum current sink capability, typically to an output
voltage of (VEE +1.8 V). In single supply applications the
output can directly source or sink base current from a
common emitter NPN transistor for fast high current
switching applications.
In addition, the all NPN transistor output stage is
inherently fast, contributing to the bipolar amplifier's high
gain bandwidth product and fast settling capability. The
associated high frequency low output impedance (30
typ
@ 1.0 MHz) allows capacitive drive capability from 0 pF to
10,000 pF without oscillation in the unity closed loop gain
configuration. The 60
phase margin and 12 dB gain margin
as well as the general gain and phase characteristics are
virtually independent of the source/sink output swing
conditions. This allows easier system phase compensation,
since output swing will not be a phase consideration. The
high frequency characteristics of the MC34071 series also
allow excellent high frequency active filter capability,
especially for low voltage single supply applications.
Although the single supply specifications is defined at
5.0 V, these amplifiers are functional to 3.0 V @ 25
C
although slight changes in parametrics such as bandwidth,
slew rate, and DC gain may occur.
If power to this integrated circuit is applied in reverse
polarity or if the IC is installed backwards in a socket, large
unlimited current surges will occur through the device that
may result in device destruction.
Special static precautions are not necessary for these
bipolar amplifiers since there are no MOS transistors on
the die.
As with most high frequency amplifiers, proper lead
dress, component placement, and PC board layout should
be exercised for optimum frequency performance. For
example, long unshielded input or output leads may result in
unwanted inputoutput coupling. In order to preserve the
relatively low input capacitance associated with these
amplifiers, resistors connected to the inputs should be
immediately adjacent to the input pin to minimize additional
stray input capacitance. This not only minimizes the input
pole for optimum frequency response, but also minimizes
extraneous "pick up" at this node. Supply decoupling with
adequate capacitance immediately adjacent to the supply pin
is also important, particularly over temperature, since many
types of decoupling capacitors exhibit great impedance
changes over temperature.
The output of any one amplifier is current limited and thus
protected from a direct short to ground. However, under
such conditions, it is important not to allow the device to
exceed the maximum junction temperature rating. Typically
for
15 V supplies, any one output can be shorted
continuously to ground without exceeding the maximum
temperature rating.
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
12
Figure 37. AC Coupled Noninverting Amplifer
Figure 38. AC Coupled Inverting Amplifier
(Typical Single Supply Applications VCC = 5.0 V)
Figure 39. DC Coupled Inverting Amplifer
Maximum Output Swing
Figure 40. Unity Gain Buffer TTL Driver
Figure 41. Active HighQ Notch Filter
Figure 42. Active Bandpass Filter
+
VCC
5.1 M
20 k
Cin
Vin
1.0 M
MC34071
VO
0
3.7 Vpp
RL
10 k
AV = 101
100 k
1.0 k
BW (3.0 dB) = 45 kHz
CO
VO
36.6 mVpp
+
3.7 Vpp
0
VCC
VO
100 k
Cin
10 k
100 k
CO
RL
10 k
68 k
Vin 370 mVpp
AV = 10 BW (3.0 dB) = 450 kHz
+
4.75 Vpp
VO
VO
VCC
RL
100 k
91 k
5.1 k
1.0 M
AV = 10
Vin
2.63 V
5.1 k
BW (3.0 dB) = 450 kHz
+
Vin
2.5 V
0
0 to 10,000 pF
Cable
TTL Gate
+
Vin
VO
16 k
C
0.01
32 k
2.0 R
2.0 C
0.02
fo = 1.0 kHz
fo =
Vin
0.2 Vdc
1
4
RC
2.0 C
0.02
16 k
R
R
+
Vin
VO
VCC
R3
2.2 k
C
0.047
R2
5.6 k
0.4 VCC
R1
fo = 30 kHz
Ho = 10
Ho = 1.0
1.1 k
Given fo = Center Frequency
AO = Gain at Center Frequency
Choose Value fo, Q, Ao, C
R3 =
R1 =
R2 =
Q
R3
R1 R3
2Ho
4Q2R1R3
foC
For less than 10% error from operational amplifier
Qofo
GBW
< 0.1
where fo and GBW are expressed in Hz.
C
0.047
MC34071
MC34071
MC34071
MC34071
MC34071
MC54/74XX
Then:
GBW = 4.5 MHz Typ.
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
13
Figure 43. Low Voltage Fast D/A Converter
Figure 44. High Speed Low Voltage Comparator
Figure 45. LED Driver
Figure 46. Transistor Driver
Figure 47. AC/DC Ground Current Monitor
Figure 48. Photovoltaic Cell Amplifier
5.0 k
10 k
Bit
Switches
CF
RF
VO
VCC
(R2R) Ladder Network
Settling Time
1.0
s (8Bits, 1/2 LSB)
+
5.0 k
5.0 k
10 k
10 k
+
VO
VO
Vin
1.0 V
2.0 k
RL
2.0 V
4.0 V
0.1
t
25 V/
s
0.2
s
Delay
Delay
1.0
s
Vin
t
13 V/
s
+
VCC
Vref
"ON"
Vin < Vref
"ON"
Vin > Vref
Vin
+
VCC
VCC
RL
RL
(A) PNP
(B) NPN
+
+
VO
ILoad
R1
R2
RS
Ground Current
Sense Resistor
VO = ILoad RS
BW ( 3.0 dB) = GBW
For VO > 0.1V
R1
R2
R1+R2
R2
+
VO
MC34071
ICell
VCell = 0 V
VO = ICell RF
VO > 0.1 V
RF
1+
MC34071
MC34071
MC34071
MC34071
MC34071
MC34071
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
14
Figure 49. Low Input Voltage Comparator
with Hysteresis
Figure 50. High Compliance Voltage to
Sink Current Converter
Figure 51. High Input Impedance
Differential Amplifier
Figure 52. Bridge Current Amplifier
Figure 53. Low Voltage Peak Detector
Figure 54. High Frequency Pulse
Width Modulation
Vref
R2
VO
VOH
VOL
VinL
VinH
Vref
Hysteresis
Vin
Vin
R1
MC34071
VinL =
(VOLVref)+Vref
R1
R1+R2
VinH =
(VOHVref)+Vref
VH =
(VOH VOL)
+
R1
R1+R
R1
R1+R2
Vin
Iout
R
+
Iout =
Vin
VIO
R
1/2
MC34072
+
+
R1
R2
R3
R4
VO
+V1
+V2
R2
R4
R3
R1
(Critical to CMRR)
VO = 1
V2V1
For (V2
V1), V > 0
=
+
R4
R3
R4
R3
+
+Vref
RF
VO
R
R
R
R =
R
R < < R
RF > > R
(VO
0.1 V)
RF
VO = Vref
R RF
2R2
+
Vin
Vin
RL
VP
10,000 pF
VO = Vin (pk)
+
VP
t
+
+
VP
t
t
Iout
VP
+
0
+
ISC
Base Charge
Removal
IB
V+
47 k
100 k
C
R
Pulse Width
Control Group
OSC
Comparator
High Current
Output
fOSC ^
V
0.85
RC
100 k
IB
MC34071
MC34071
MC34071
1/2
MC34072
1/2
MC34072
1/2
MC34072
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
15
Figure 55. Second Order LowPass Active Filter
Figure 56. Second Order HighPass Active Filter
GENERAL ADDITIONAL APPLICATIONS INFORMATION VS =
15.0 V
Figure 57. Fast Settling Inverter
Figure 58. Basic Inverting Amplifier
Figure 59. Basic Noninverting Amplifier
Figure 60. Unity Gain Buffer (AV = +1.0)
+
R1
R3
560
510
C2
C1
0.44
0.02
R2
5.6 k
MC34071
fo = 1.0 kHz
Ho = 10
Choose: fo, Ho, C2
Then: C1 = 2C2 (Ho+1)
R2 =
R3 =
R1 =
R2
Ho
Ho+1
4
foC2
R2
+
C2
0.05
C1
1.0
R1
46.1 k
R2
1.1 k
fo = 100 Hz
Ho = 20
Choose: fo, Ho, C1
Then: R1 =
R2 =
C2 =
Ho+0.5
foC1
2
foC1 (1/Ho+2)
C
Ho
C1
1.0
+
CF*
VO = 10 V
Step
RF
2.0 k
I
High Speed
DAC
*Optional Compensation
Uncompensated
Compensated
ts = 1.0
s
to 1/2 LSB (8Bits)
ts = 2.2
s
to 1/2 LSB (12Bits)
SR = 13 V/
s
VO
+
R1
R2
VO
Vin
RL
BW (3.0 dB) = GBW
=
SR = 13 V/
s
VO
Vin
R2
R1
R1 +R2
R1
BW (3.0 dB) = GBW
R1 +R2
R1
+
Vin
VO
R2
RL
R1
=
VO
Vin
R2
R1
1 +
+
Vin
VO
BWp = 200 kHz
VO = 20 Vpp
SR = 10 V/
s
MC34071
MC34071
MC34071
MC34071
MC34071
2
2
2
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
16
Figure 61. High Impedance Differential Amplifier
Figure 62. Dual Voltage Doubler
R
RE
Example:
Let: R = RE = 12 k
Then: AV = 3.0
BW = 1.5 MHz
AV = 1 + 2
R
RE
+
+
+
VO
R
R
R
R
R
MC34074
+
+
100 k
10
+10
10
220 pF
VO
+VO
RL
+VO
VO
18.93
18.78
10 k
18
18
5.0 k
15.4
15.4
RL
100 k
100 k
RL
+
+
+
+
+
10
10
10
MC34074
MC34074
MC34074
MC34074
MC34074
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
17
ORDERING INFORMATION
Op Amp
Function
Device
Operating
Temperature Range
Package
Shipping
Single
MC34071P, MC34071AP
MC34071D, MC34071AD
MC34071DR2, MC34071ADR2
TA = 0
to +70
C
DIP8
SO8
SO8 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
MC33071P, MC33071AP
MC33071D, MC33071AD
MC33071DR2, MC33071ADR2
TA = 40
to +85
C
DIP8
SO8
SO8 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
Dual
MC34072P, MC34072AP
MC34072D, MC34072AD
MC34072DR2, MC34072ADR2
TA = 0
to +70
C
DIP8
SO8
SO8 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
MC33072P, MC33072AP
MC33072D, MC33072AD
MC33072DR2, MC33072ADR2
TA = 40
to +85
C
DIP8
SO8
SO8 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
MC34072VD
MC34072VDR2
TA = 40
to +125
C
SO8
SO8 / Tape & Reel
98 Units / Rail
2500 Units / Tape & Reel
Quad
MC34074P, MC34074AP
MC34074D, MC34074AD
MC34074DR2, MC34074ADR2
TA = 0
to +70
C
DIP8
SO8
SO8 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
MC33074P, MC33074AP
MC33074D, MC33074AD
MC33074DR2, MC33074ADR2
MC33074DTB, MC33074ADTB
MC33074DTBR2, MC33074ADTBR2
TA = 40
to +85
C
DIP8
SO8
SO8 / Tape & Reel
TSSOP14
TSSOP14 / Tape & Reel
50 Units / Rail
98 Units / Rail
2500 Units / Tape & Reel
96 Units / Rail
2500 Units / Tape & Reel
MC34074VD
MC34074VDR2
TA = 40
to +125
C
SO8
SO8 / Tape & Reel
98 Units / Rail
2500 Units / Tape & Reel
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
18
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 62605
ISSUE K
D SUFFIX
(SO8)
PLASTIC PACKAGE
CASE 75105
ISSUE R
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
1
4
5
8
F
NOTE 2
A
B
T
SEATING
PLANE
H
J
G
D
K
N
C
L
M
M
A
M
0.13 (0.005)
B
M
T
DIM
MIN
MAX
MIN
MAX
INCHES
MILLIMETERS
A
9.40
10.16
0.370
0.400
B
6.10
6.60
0.240
0.260
C
3.94
4.45
0.155
0.175
D
0.38
0.51
0.015
0.020
F
1.02
1.78
0.040
0.070
G
2.54 BSC
0.100 BSC
H
0.76
1.27
0.030
0.050
J
0.20
0.30
0.008
0.012
K
2.92
3.43
0.115
0.135
L
7.62 BSC
0.300 BSC
M
10
10
N
0.76
1.01
0.030
0.040
_
_
SEATING
PLANE
1
4
5
8
A
0.25
M
C B
S
S
0.25
M
B
M
h
q
C
X 45
_
L
DIM
MIN
MAX
MILLIMETERS
A
1.35
1.75
A1
0.10
0.25
B
0.35
0.49
C
0.18
0.25
D
4.80
5.00
E
1.27 BSC
e
3.80
4.00
H
5.80
6.20
h
0
7
L
0.40
1.25
q
0.25
0.50
_
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
D
E
H
A
B
e
B
A1
C
A
0.10
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
19
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 64606
ISSUE L
D SUFFIX
(SO14)
PLASTIC PACKAGE
CASE 751A03
ISSUE F
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
1
7
14
8
B
A
F
H
G
D
K
C
N
L
J
M
SEATING
PLANE
DIM
MIN
MAX
MIN
MAX
MILLIMETERS
INCHES
A
0.715
0.770
18.16
19.56
B
0.240
0.260
6.10
6.60
C
0.145
0.185
3.69
4.69
D
0.015
0.021
0.38
0.53
F
0.040
0.070
1.02
1.78
G
0.100 BSC
2.54 BSC
H
0.052
0.095
1.32
2.41
J
0.008
0.015
0.20
0.38
K
0.115
0.135
2.92
3.43
L
0.300 BSC
7.62 BSC
M
0
10 0 10
N
0.015
0.039
0.39
1.01
_
_
_
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
A
B
G
P
7 PL
14
8
7
1
M
0.25 (0.010)
B
M
S
B
M
0.25 (0.010)
A
S
T
T
F
R
X 45
SEATING
PLANE
D
14 PL
K
C
J
M
_
DIM
MIN
MAX
MIN
MAX
INCHES
MILLIMETERS
A
8.55
8.75
0.337
0.344
B
3.80
4.00
0.150
0.157
C
1.35
1.75
0.054
0.068
D
0.35
0.49
0.014
0.019
F
0.40
1.25
0.016
0.049
G
1.27 BSC
0.050 BSC
J
0.19
0.25
0.008
0.009
K
0.10
0.25
0.004
0.009
M
0
7
0
7
P
5.80
6.20
0.228
0.244
R
0.25
0.50
0.010
0.019
_
_
_
_
background image
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
20
PACKAGE DIMENSIONS
DTB SUFFIX
(TSSOP14)
PLASTIC PACKAGE
CASE 948G01
ISSUE O
DIM
MIN
MAX
MIN
MAX
INCHES
MILLIMETERS
A
4.90
5.10
0.193
0.200
B
4.30
4.50
0.169
0.177
C
1.20
0.047
D
0.05
0.15
0.002
0.006
F
0.50
0.75
0.020
0.030
G
0.65 BSC
0.026 BSC
H
0.50
0.60
0.020
0.024
J
0.09
0.20
0.004
0.008
J1
0.09
0.16
0.004
0.006
K
0.19
0.30
0.007
0.012
K1
0.19
0.25
0.007
0.010
L
6.40 BSC
0.252 BSC
M
0
8
0
8
NOTES:
1.
DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2.
CONTROLLING DIMENSION: MILLIMETER.
3.
DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4.
DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5.
DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6.
TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7.
DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE W.
_
_
_
_
S
U
0.15 (0.006) T
2X
L/2
S
U
M
0.10 (0.004)
V
S
T
L
U
SEATING
PLANE
0.10 (0.004)
T
SECTION NN
DETAIL E
J J1
K
K1
DETAIL E
F
M
W
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U
0.15 (0.006) T
V
14X REF
K
N
N
USA/EUROPE Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line*: 3036752167
8003443810 Toll Free USA/Canada
*To receive a Fax of our publications
N. America Technical Support: 8002829855 Toll Free USA/Canada
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
ASIA/PACIFIC: LDC for ON Semiconductor Asia Support
Phone:
3036752121 (TueFri 9:00am to 1:00pm, Hong Kong Time)
Email: ONlitasia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4321 NishiGotanda, Shinagawaku, Tokyo, Japan 1418549
Phone: 81354878345
Email: r14153@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
MC34071/D

Document Outline