ChipFind - документация

Электронный компонент: BT139B-500F

Скачать:  PDF   ZIP
Philips Semiconductors
Product specification
Triacs
BT139B series
GENERAL DESCRIPTION
QUICK REFERENCE DATA
Glass passivated triacs in a plastic
SYMBOL
PARAMETER
MAX.
MAX.
MAX. UNIT
envelope
suitable
for
surface
mounting,
intended
for
use
in
BT139B-
500
600
800
applications
requiring
high
BT139B-
500F
600F
800F
bidirectional transient and blocking
BT139B-
500G
600G
800G
voltage capability and high thermal
V
DRM
Repetitive peak off-state
500
600
800
V
cycling
performance.
Typical
voltages
applications include motor control,
I
T(RMS)
RMS on-state current
16
16
16
A
industrial
and
domestic
lighting,
I
TSM
Non-repetitive peak on-state
140
140
140
A
heating and static switching.
current
PINNING - SOT404
PIN CONFIGURATION
SYMBOL
PIN
DESCRIPTION
1
main terminal 1
2
main terminal 2
3
gate
mb
main terminal 2
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
-500
-600
-800
V
DRM
Repetitive peak off-state
-
500
1
600
1
800
V
voltages
I
T(RMS)
RMS on-state current
full sine wave; T
mb
99 C
-
16
A
I
TSM
Non-repetitive peak
full sine wave; T
j
= 25 C prior to
on-state current
surge
t = 20 ms
-
140
A
t = 16.7 ms
-
150
A
I
2
t
I
2
t for fusing
t = 10 ms
-
98
A
2
s
dI
T
/dt
Repetitive rate of rise of
I
TM
= 20 A; I
G
= 0.2 A;
on-state current after
dI
G
/dt = 0.2 A/
s
triggering
T2+ G+
-
50
A/
s
T2+ G-
-
50
A/
s
T2- G-
-
50
A/
s
T2- G+
-
10
A/
s
I
GM
Peak gate current
-
2
A
V
GM
Peak gate voltage
-
5
V
P
GM
Peak gate power
-
5
W
P
G(AV)
Average gate power
over any 20 ms period
-
0.5
W
T
stg
Storage temperature
-40
150
C
T
j
Operating junction
-
125
C
temperature
1
3
mb
2
T1
T2
G
1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 15 A/
s.
October 1997
1
Rev 1.100
Philips Semiconductors
Product specification
Triacs
BT139B series
THERMAL RESISTANCES
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
R
th j-mb
Thermal resistance
full cycle
-
-
1.2
K/W
junction to mounting base
half cycle
-
-
1.7
K/W
R
th j-a
Thermal resistance
minimum footprint, FR4 board
-
55
-
K/W
junction to ambient
STATIC CHARACTERISTICS
T
j
= 25 C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
BT139B-
...
...F
...G
I
GT
Gate trigger current
V
D
= 12 V; I
T
= 0.1 A
T2+ G+
-
5
35
25
50
mA
T2+ G-
-
8
35
25
50
mA
T2- G-
-
10
35
25
50
mA
T2- G+
-
22
70
70
100
mA
I
L
Latching current
V
D
= 12 V; I
GT
= 0.1 A
T2+ G+
-
7
40
40
60
mA
T2+ G-
-
20
60
60
90
mA
T2- G-
-
8
40
40
60
mA
T2- G+
-
10
60
60
90
mA
I
H
Holding current
V
D
= 12 V; I
GT
= 0.1 A
-
6
30
30
60
mA
V
T
On-state voltage
I
T
= 20 A
-
1.2
1.6
V
V
GT
Gate trigger voltage
V
D
= 12 V; I
T
= 0.1 A
-
0.7
1.5
V
V
D
= 400 V; I
T
= 0.1 A;
0.25
0.4
-
V
T
j
= 125 C
I
D
Off-state leakage current
V
D
= V
DRM(max)
;
-
0.1
0.5
mA
T
j
= 125 C
DYNAMIC CHARACTERISTICS
T
j
= 25 C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
BT139B-
...
...F
...G
dV
D
/dt
Critical rate of rise of
V
DM
= 67% V
DRM(max)
;
100
50
200
250
-
V/
s
off-state voltage
T
j
= 125 C; exponential
waveform; gate open
circuit
dV
com
/dt
Critical rate of change of
V
DM
= 400 V; T
j
= 95 C;
-
-
10
20
-
V/
s
commutating voltage
I
T(RMS)
= 16 A;
dI
com
/dt = 7.2 A/ms; gate
open circuit
t
gt
Gate controlled turn-on
I
TM
= 20 A; V
D
= V
DRM(max)
;
-
-
-
2
-
s
time
I
G
= 0.1 A; dI
G
/dt = 5 A/
s
October 1997
2
Rev 1.100
Philips Semiconductors
Product specification
Triacs
BT139B series
Fig.1. Maximum on-state dissipation, P
tot
, versus rms
on-state current, I
T(RMS)
, where
= conduction angle.
Fig.2. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus pulse width t
p
, for
sinusoidal currents, t
p
20ms.
Fig.3. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
Fig.4. Maximum permissible rms current I
T(RMS)
,
versus mounting base temperature T
mb
.
Fig.5. Maximum permissible repetitive rms on-state
current I
T(RMS)
, versus surge duration, for sinusoidal
currents, f = 50 Hz; T
mb
99C.
Fig.6. Normalised gate trigger voltage
V
GT
(T
j
)/ V
GT
(25C), versus junction temperature T
j
.
0
5
10
15
20
0
5
10
15
20
25
= 180
120
90
60
30
BT139
IT(RMS) / A
Ptot / W
Tmb(max) / C
125
119
113
107
101
95
1
-50
0
50
100
150
0
5
10
15
20
BT139
99 C
Tmb / C
IT(RMS) / A
10us
100us
1ms
10ms
100ms
10
100
1000
BT139
T / s
ITSM / A
T
ITSM
time
I
Tj initial = 25 C max
T
dI /dt limit
T
T2- G+ quadrant
0.01
0.1
1
10
0
10
20
30
40
50
BT139
surge duration / s
IT(RMS) / A
1
10
100
1000
0
50
100
150
BT139
Number of cycles at 50Hz
ITSM / A
T
ITSM
time
I
Tj initial = 25 C max
T
-50
0
50
100
150
0.4
0.6
0.8
1
1.2
1.4
1.6
BT136
Tj / C
VGT(Tj)
VGT(25 C)
October 1997
3
Rev 1.100
Philips Semiconductors
Product specification
Triacs
BT139B series
Fig.7. Normalised gate trigger current
I
GT
(T
j
)/ I
GT
(25C), versus junction temperature T
j
.
Fig.8. Normalised latching current I
L
(T
j
)/ I
L
(25C),
versus junction temperature T
j
.
Fig.9. Normalised holding current I
H
(T
j
)/ I
H
(25C),
versus junction temperature T
j
.
Fig.10. Typical and maximum on-state characteristic.
Fig.11. Transient thermal impedance Z
th j-mb
, versus
pulse width t
p
.
Fig.12. Typical commutation dV/dt versus junction
temperature, parameter commutation dI
T
/dt. The triac
should commutate when the dV/dt is below the value
on the appropriate curve for pre-commutation dI
T
/dt.
-50
0
50
100
150
0
0.5
1
1.5
2
2.5
3
BT139
Tj / C
T2+ G+
T2+ G-
T2- G-
T2- G+
IGT(Tj)
IGT(25 C)
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
BT139
VT / V
IT / A
Tj = 125 C
Tj = 25 C
typ
max
Vo = 1.195 V
Rs = 0.018 Ohms
-50
0
50
100
150
0
0.5
1
1.5
2
2.5
3
TRIAC
Tj / C
IL(Tj)
IL(25 C)
0.001
0.01
0.1
1
10
BT139
tp / s
Zth j-mb (K/W)
10us
0.1ms
1ms
10ms
0.1s
1s
10s
t
p
P
t
D
unidirectional
bidirectional
-50
0
50
100
150
0
0.5
1
1.5
2
2.5
3
TRIAC
Tj / C
IH(Tj)
IH(25C)
0
50
100
150
1
10
100
1000
Tj / C
9.3
dV/dt (V/us)
5.6
dIcom/dt =
20 A/ms
16
off-state dV/dt limit
BT139 SERIES
BT139...F SERIES
12
7.2
BT139...G SERIES
October 1997
4
Rev 1.100
Philips Semiconductors
Product specification
Triacs
BT139B series
MECHANICAL DATA
Dimensions in mm
Net Mass: 1.4 g
Fig.13. SOT404 : centre pin connected to mounting base.
MOUNTING INSTRUCTIONS
Dimensions in mm
Fig.14. SOT404 : soldering pattern for surface mounting.
Notes
1. Plastic meets UL94 V0 at 1/8".
11 max
4.5 max
1.4 max
10.3 max
0.5
15.4
2.5
0.85 max
(x2)
2.54 (x2)
17.5
11.5
9.0
5.08
3.8
2.0
October 1997
5
Rev 1.100
Philips Semiconductors
Product specification
Triacs
BT139B series
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
October 1997
6
Rev 1.100