ChipFind - документация

Электронный компонент: TDA8768AH/7

Скачать:  PDF   ZIP

Document Outline

TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Rev. 02 -- 03 July 2002
Product data
1.
Description
The TDA8768AH is a biCMOS 12-bit Analog-to-Digital Converter (ADC) optimized for
GSM and EDGE cellular infrastructures, professional telecommunications and
imaging, and advanced FM radio. It converts the analog input signal into 12-bit binary
coded digital words at a maximum sampling rate of 70 MHz. All static digital inputs
(SH, CE and OTC) are TTL and CMOS compatible and all outputs are CMOS
compatible. A sine wave clock input signal can also be used.
2.
Features
s
12-bit resolution
s
Sampling rate up to 70 MHz
s
-
3 dB bandwidth of 245 MHz
s
5 V power supplies and 3.3 V output power supply
s
Binary or twos complement CMOS outputs
s
In-range CMOS compatible output
s
TTL and CMOS compatible static digital inputs
s
TTL and CMOS compatible digital outputs
s
Differential AC or PECL clock input; TTL compatible
s
Power dissipation 550 mW (typical)
s
Low analog input capacitance (typical 2 pF), no buffer amplifier required
s
Integrated sample-and-hold amplifier
s
Differential analog input
s
External amplitude range control
s
Voltage controlled regulator included
s
-
40
C to +85
C ambient temperature.
3.
Applications
s
High-speed analog-to-digital conversion for:
x
Cellular infrastructure (GSM and EDGE)
x
Professional telecommunication
x
Advanced FM radio
x
Radar
x
Imaging (camera scanner)
x
Set Top Box (STB)
x
Medical imaging.
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
2 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
4.
Quick reference data
5.
Ordering information
Table 1:
Quick reference data
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
V
CCA
analog supply voltage
4.75
5.0
5.25
V
V
CCD
digital supply voltage
4.75
5.0
5.25
V
V
CCO
output supply voltage
3.0
3.3
3.6
V
I
CCA
analog supply current
-
78
87
mA
I
CCD
digital supply current
-
27
30
mA
I
CCO
output supply current
f
CLK
= 20 MHz
f
i
= 400 kHz
-
3
4
mA
INL
integral non-linearity
f
CLK
= 20 MHz
f
i
= 400 kHz
-
2.6
4.5
LSB
DNL
differential non-linearity
(no missing code)
f
CLK
= 20 MHz
f
i
= 400 kHz
-
0.5
+1.1
-
0.95
LSB
f
CLK(max)
maximum clock frequency
-
-
-
-
TDA8768AH/4
40
-
-
MHz
TDA8768AH/5
55
-
MHz
TDA8768AH/7
70
-
-
MHz
P
tot
total power dissipation
f
CLK
= 55 MHz
f
i
= 20 MHz
-
550
660
mW
Table 2:
Ordering information
Type number
Package
Sampling
frequency
(MHz)
Name
Description
Version
TDA8768AH/4
QFP44
plastic quad flat package; 44 leads
(lead length 1.3 mm); body 10
10
1.75 mm
SOT307-2
40
TDA8768AH/5
55
TDA8768AH/7
70
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
3 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
6.
Block diagram
Fig 1.
Block diagram.
005aaa024
D11
MSB
data outputs
19
21
D10
22
D9
23
D8
24
D7
25
D6
26
D5
27
D4
D3
28
29
43
42
39
11
6 to 10, 13, 14, 16
Vref
SH
n.c.
D2
30
D1
31
D0
LSB
32
VCCO
33
IR
34
20
18
CMOS
OUTPUTS
LATCHES
ANALOG-TO-DIGITAL
CONVERTER
CLOCK DRIVER
15
VCCD2
37
VCCD1
41
VCCA4
3
VCCA3
2
VCCA1
36
CLK
35
CLK
CMOS
OUTPUT
OGND
OVERFLOW/
UNDERFLOW
LATCH
CE
OTC
AMP
sample-
and-hold
TDA8768A
17
DGND2
38
DGND1
40
AGND4
4
AGND3
44
AGND1
VI
VI
12
VREF
REFERENCE
FSref
CMADC
REFERENCE
1
CMADC
5
DEC
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
4 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
7.
Pinning information
7.1 Pinning
7.2 Pin description
Fig 2.
Pin configuration.
TDA8768AH
FCE002
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
12
13
14
15
16
17
18
19
20
21
22
44
43
42
41
40
39
38
37
36
35
34
CMADC
DEC
n.c.
n.c.
n.c.
n.c.
n.c.
VCCA1
VCCA3
Vref
AGND3
FS
ref
n.c.
n.c.
n.c.
IR
D11
D10
DGND2
V
CCD2
CE
OT
C
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
OGND
DGND1
A
GND4
A
GND1
V
CCD1
V
CCA4
CLK
VCCO
CLK
SH
V
I
V
I
Table 3:
Pin description
Symbol
Pin
Description
CMADC
1
regulator output common mode ADC input
V
CCA1
2
analog supply voltage 1 (+5 V)
V
CCA3
3
analog supply voltage 3 (+5 V)
AGND3
4
analog ground 3
DEC
5
decoupling node
n.c.
6
not connected
n.c.
7
not connected
n.c.
8
not connected
n.c.
9
not connected
n.c.
10
not connected
VREF
11
reference voltage input
FSREF
12
full-scale reference output
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
5 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
8.
Limiting values
n.c.
13
not connected
n.c.
14
not connected
V
CCD2
15
digital supply voltage 2 (+5 V)
n.c.
16
not connected
DGND2
17
digital ground 2
OTC
18
control input twos complement output; active HIGH
CE
19
chip enable input (CMOS level; active LOW)
IR
20
in-range output
D11
21
data output; bit 11 (MSB)
D10
22
data output; bit 10
D9
23
data output; bit 9
D8
24
data output; bit 8
D7
25
data output; bit 7
D6
26
data output; bit 6
D5
27
data output; bit 5
D4
28
data output; bit 4
D3
29
data output; bit 3
D2
30
data output; bit 2
D1
31
data output; bit 1
D0
32
data output; bit 0 (LSB)
V
CCO
33
output supply voltage (+3.3 V)
OGND
34
output ground
CLK
35
complementary clock input
CLK
36
clock input
V
CCD1
37
digital supply voltage 1 (+5 V)
DGND1
38
digital ground 1
SH
39
sample-and-hold enable input (CMOS level; active HIGH)
AGND4
40
analog ground 4
V
CCA4
41
analog supply voltage 4 (+5 V)
V
I
42
analog input voltage
V
I
43
complementary analog input voltage
AGND1
44
analog ground 1
Table 3:
Pin description
...continued
Symbol
Pin
Description
Table 4:
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
V
CCA
analog supply voltage
[1]
-
0.3
+7.0
V
V
CCD
digital supply voltage
[1]
-
0.3
+7.0
V
V
CCO
output supply voltage
[1]
-
0.3
+7.0
V
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
6 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
[1]
The supply voltages V
CCA
, V
CCD
and V
CCO
may have any value between
-
0.3 V and +7.0 V provided
that the supply voltage differences
V
CC
are respected.
9.
Thermal characteristics
10. Characteristics
V
CC
supply voltage difference
V
CCA
-
V
CCD
-
1.0
+1.0
V
V
CCD
-
V
CCO
-
1.0
+4.0
V
V
CCA
-
V
CCO
-
1.0
+4.0
V
V
I
, V
I
input voltage at
pins 42 and 43
referenced to
AGND
0.3
V
CCA
V
V
CLK(p-p)
input voltage at pins
35 and 36 for differential
clock drive (peak-to-peak
value)
-
V
CCD
V
I
O
output current
-
10
mA
T
stg
storage temperature
-
55
+150
C
T
amb
ambient temperature
-
40
+85
C
T
j
junction temperature
-
150
C
Table 4:
Limiting values
...continued
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
Table 5:
Thermal characteristics
Symbol
Parameter
Condition
Value
Unit
R
th(j-a)
thermal resistance from junction to
ambient
in free air
75
K/W
Table 6:
Characteristics
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
Supplies
V
CCA
analog supply voltage
4.75
5.0
5.25
V
V
CCD
digital supply voltage
4.75
5.0
5.25
V
V
CCO
output supply voltage
3.0
3.3
3.6
V
I
CCA
analog supply current
I
-
78
87
mA
I
CCD
digital supply current
I
-
27
30
mA
I
CCO
output supply current
f
CLK
= 20 MHz; f
i
= 400 kHz
I
-
3
4
mA
f
CLK
= 40 MHz; f
i
= 4.43 MHz C
-
6.2
9
mA
f
CLK
= 55 MHz; f
i
= 20 MHz
I
-
9.5
12
mA
Inputs
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
7 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
CLK and CLK (referenced to DGND)
[2]
V
IL
LOW-level input voltage
PECL mode; V
CCD
= 5 V
I
3.19
-
3.52
V
TTL mode
C
0
-
0.8
V
V
IH
HIGH-level input voltage
PECL mode; V
CCD
= 5 V
I
3.83
-
4.12
V
TTL mode
C
2.0
-
V
CCD
V
I
IL
LOW-level input current
V
CLK
or V
CLK
= 3.19 V
C
-
10
-
-
A
I
IH
HIGH-level input current
V
CLK
or V
CLK
= 3.83 V
C
-
-
10
A
V
CLK(p-p)
differential AC input voltage
for switching
(V
CLK(p-p)
-
V
CLK(p-p)
)
AC driving mode; DC voltage
level = 2.5 V
C
1
1.5
2.0
V
R
i
input resistance
f
CLK
= 55 MHz
D
2
-
-
k
C
i
input capacitance
f
CLK
= 55 MHz
D
-
-
2
pF
OTC, SH and CE (referenced to DGND); see Tables
7
and
8
V
IL
LOW-level input voltage
I
0
-
0.8
V
V
IH
HIGH-level input voltage
I
2.0
-
V
CCD
V
I
IL
LOW-level input current
V
IL
= 0.8 V
I
-
20
-
-
A
I
IH
HIGH-level input current
V
IH
= 2.0 V
I
-
-
20
A
V
I
and V
I
(referenced to AGND); see
Table 7
, V
ref
= V
CCA3
-
1.75 V
I
IL
LOW-level input current
SH = HIGH
C
-
10
-
A
I
IH
HIGH-level input current
SH = HIGH
C
-
10
-
A
R
i
input resistance
f
i
= 20 MHz
D
-
14
-
M
C
i
input capacitance
f
i
= 20 MHz
D
-
450
-
fF
V
I(CM)
common mode input voltage
V
I
= V
I
; output code 2047
C
V
CCA3
-
1.7
V
CCA3
-
1.6 V
CCA3
-
1.2
V
Voltage controlled regulator output CMADC
V
o(CM)
common mode output voltage
I
-
V
CCA3
-
1.6 -
V
I
L
load current
I
-
1
2
mA
Voltage input V
ref
[3]
V
ref
full-scale fixed voltage
f
i
= 20 MHz; f
CLK
= 55 Msps
C
-
V
CCA3
-
1.75
-
V
I
ref
input current at V
ref
C
-
0.3
10
A
V
I(p-p)
-
V
I(p-p)
input voltage amplitude
(peak-to-peak value)
V
ref
= V
CCA3
-
1.75 V
V
I(CM)
= V
CCA3
-
1.6 V
C
-
1.9
-
V
Voltage controlled regulator output FS
ref
V
o(ref)
1.9 V full-scale output voltage
I
-
V
CCA3
-
1.75
-
V
Outputs (referenced to OGND)
Digital outputs D11 to D0 and IR (referenced to OGND)
V
OL
LOW-level output voltage
I
OL
= 2 mA
I
0
-
0.5
V
Table 6:
Characteristics
...continued
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
8 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
V
OH
HIGH-level output voltage
I
OH
=
-
0.4 mA
I
V
CCO
-
0.5
-
V
CCO
V
I
o
output current in 3-state
output level between 0.5 V
and V
CCO
I
-
20
-
+20
A
Switching characteristics
Clock frequency f
CLK
; see
Figure 3
f
CLK(min)
minimum clock frequency
SH = HIGH
C
-
-
7
MHz
f
CLK(max)
maximum clock frequency
TDA8768AH/4
C
40
-
-
MHz
TDA8768AH/5
I
55
-
-
MHz
TDA8768AH/7
C
70
-
-
MHz
t
CLKH
clock pulse width HIGH
f
i
= 20 MHz
C
6.8
-
-
ns
t
CLKL
clock pulse width LOW
f
i
= 20 MHz
C
6.8
-
-
ns
Analog signal processing; 50% clock duty factor; V
I
-
V
I
= 1.9 V; V
ref
= V
CCA3
-
1.75 V; see
Table 7
Linearity
INL
integral non-linearity
f
CLK
= 20 MHz; f
i
= 400 kHz
I
-
2.6
4.5
LSB
DNL
differential non-linearity
f
CLK
= 20 MHz; f
i
= 400 kHz
(no missing code
guaranteed)
I
-
0.5
+1.1
-
0.95
LSB
O
err
offset error
V
CCA
= V
CCD
= 5 V;
V
CCO
= 3.3 V; T
amb
= 25
C;
output code = 2047
C
-
25
5
25
mV
E
G
gain error amplitude; spread
from device to device
V
CCA
= V
CCD
= 5 V;
V
CCO
= 3.3 V; T
amb
= 25
C
C
-
7
-
+7
%FS
Bandwidth (f
CLK
= 55 MHz)
[4]
B
analog bandwidth
-
3 dB; full-scale input
C
220
245
-
MHz
Harmonics
H
2
second harmonic
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
-
78
-
dBFS
f
i
= 10 MHz
C
-
-
77
-
dBFS
f
i
= 15 MHz
C
-
-
74
-
dBFS
f
i
= 20 MHz
C
-
-
71
-
dBFS
second harmonic
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
-
77
-
dBFS
f
i
= 10 MHz
C
-
-
77
-
dBFS
f
i
= 15 MHz
C
-
-
76
-
dBFS
f
i
= 20 MHz
I
-
-
73
-
dBFS
second harmonic
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
-
76
-
dBFS
f
i
= 10 MHz
C
-
-
74
-
dBFS
f
i
= 15 MHz
C
-
-
70
-
dBFS
Table 6:
Characteristics
...continued
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
9 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
H
3
third harmonic
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
-
74
-
dBFS
f
i
= 10 MHz
C
-
-
74
-
dBFS
f
i
= 15 MHz
C
-
-
74
-
dBFS
f
i
= 20 MHz
C
-
-
73
-
dBFS
third harmonic
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
-
74
-
dBFS
f
i
= 10 MHz
C
-
-
74
-
dBFS
f
i
= 15 MHz
C
-
-
74
-
dBFS
f
i
= 20 MHz
I
-
-
72
-
dBFS
third harmonic
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
-
74
-
dBFS
f
i
= 10 MHz
C
-
-
74
-
dBFS
f
i
= 15 MHz
C
-
-
73
-
dBFS
Total harmonic distortion
[5]
THD
total harmonic distortion
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
-
68
-
dBFS
f
i
= 10 MHz
C
-
-
68
-
dBFS
f
i
= 15 MHz
C
-
-
68
-
dBFS
f
i
= 20 MHz
C
-
-
68
-
dBFS
total harmonic distortion
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
-
68
-
dBFS
f
i
= 10 MHz
C
-
-
68
-
dBFS
f
i
= 15 MHz
C
-
-
68
-
dBFS
f
i
= 20 MHz
I
-
-
68
-
dBFS
total harmonic distortion
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
-
68
-
dBFS
f
i
= 10 MHz
C
-
-
67
-
dBFS
f
i
= 15 MHz
C
-
-
67
-
dBFS
Thermal noise (f
CLK
= 55 MHz)
N
th(rms)
thermal noise (RMS value)
shorted input; SH = HIGH;
f
CLK
= 55 MHz
C
-
0.45
-
LSB
Signal-to-noise ratio
[6]
SNR
signal-to-noise ratio
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
64
-
dBFS
f
i
= 10 MHz
C
-
64
-
dBFS
f
i
= 15 MHz
C
-
64
-
dBFS
f
i
= 20 MHz
C
-
64
-
dBFS
signal-to-noise ratio
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
64
-
dBFS
f
i
= 10 MHz
C
-
64
-
dBFS
f
i
= 15 MHz
C
-
64
-
dBFS
f
i
= 20 MHz
I
-
64
-
dBFS
signal-to-noise ratio
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
64
-
dBFS
f
i
= 10 MHz
C
-
64
-
dBFS
f
i
= 15 MHz
C
-
63
-
dBFS
Table 6:
Characteristics
...continued
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
10 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Spurious free dynamic range; see
Figure 7
,
13
and
14
SFDR
spurious free dynamic range
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
72
-
dBFS
f
i
= 10 MHz
C
-
71
-
dBFS
f
i
= 15 MHz
C
-
71
-
dBFS
f
i
= 20 MHz
C
-
69
-
dBFS
spurious free dynamic range
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
72
-
dBFS
f
i
= 10 MHz
C
-
71
-
dBFS
f
i
= 15 MHz
C
-
71
-
dBFS
f
i
= 20 MHz
I
-
69
-
dBFS
spurious free dynamic range
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
70
-
dBFS
f
i
= 10 MHz
C
-
69
-
dBFS
f
i
= 15 MHz
C
-
69
-
dBFS
Effective number of bits
[7]
ENOB
effective number of bits
TDA8768AH/4
(f
CLK
= 40 MHz)
f
i
= 4.43 MHz
C
-
10.1
-
bits
f
i
= 10 MHz
C
-
10.1
-
bits
f
i
= 15 MHz
C
-
10.1
-
bits
f
i
= 20 MHz
C
-
10
-
bits
effective number of bits
TDA8768AH/5
(f
CLK
= 55 MHz)
f
i
= 4.43 MHz
C
-
10.1
-
bits
f
i
= 10 MHz
C
-
10.1
-
bits
f
i
= 15 MHz
C
-
10
-
bits
f
i
= 20 MHz
I
-
10
-
bits
effective number of bits
TDA8768AH/7
(f
CLK
= 70 MHz)
f
i
= 4.43 MHz
C
-
10
-
bits
f
i
= 10 MHz
C
-
10
-
bits
f
i
= 15 MHz
C
-
10
-
bits
Intermodulation; (f
CLK
= 55 MHz; f
i
= 20 MHz)
[8]
TTIR
two-tone intermodulation
rejection
C
-
-
68
-
dB
d
3
third-order intermodulation
distortion
C
-
-
70
-
dB
Bit error rate (f
CLK
= 55 MHz)
BER
bit error rate
f
i
= 20 MHz; V
I
=
16 LSB at
code 2047
C
-
10
-
14
-
times/
sample
Timing (C
L
= 10 pF)
[9]
t
d(s)
sampling delay time
C
-
0.25
1
ns
t
h(o)
output hold time
C
4
6.4
-
ns
t
d(o)
output delay time
C
-
9.0
13
ns
Table 6:
Characteristics
...continued
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
11 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
[1]
D = guaranteed by design; C = guaranteed by characterization; I = 100% industrially tested.
[2]
The circuit has two clock inputs: CLK and CLK. There are 5 modes of operation:
a) PECL mode 1: (DC level vary 1:1 with V
CCD
) CLK and CLK inputs are at differential PECL levels.
b) PECL mode 2: (DC level vary 1:1 with V
CCD
) CLK input is at PECL level and sampling is taken on the falling edge of the clock input
signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a 100 nF capacitor.
c) PECL mode 3: (DC level vary 1:1 with V
CCD
) CLK input is at PECL level and sampling is taken on the rising edge of the clock input
signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a 100 nF capacitor.
d) Differential AC driving mode 4: When driving the CLK input directly and with any AC signal of minimum 1 V (p-p) and with a DC level
of 2.5 V, the sampling takes place at the falling edge of the clock signal.
When driving the CLK input with the same signal, sampling takes place at the rising edge of the clock signal. It is recommended to
decouple the CLK or CLK input to DGND via a 100 nF capacitor.
e) TTL mode 1: CLK input is at TTL level and sampling is taken on the falling edge of the clock input signal.
In that case CLK pin has to be connected to the ground.
[3]
The ADC input range can be adjusted with an external reference connected to V
ref
pin. This voltage has to be referenced to V
CCA
;
see
Figure 12
.
[4]
The
-
3 dB analog bandwidth is determined by the 3 dB reduction in the reconstructed output, the input being a full-scale sine wave.
[5]
Total Harmonic Distortion (THD) is obtained with the addition of the first five harmonics:
where F is the fundamental harmonic referenced at 0 dB for a full-scale sine wave input; see
Figure 6
.
[6]
Signal-to-noise ratio (SNR) takes into account all harmonics above five and noise up to nyquist frequency; see
Figure 8
.
[7]
Effective number of bits are obtained via a Fast Fourier Transform (FFT). The calculation takes into account all harmonics and noise up
to half of the clock frequency (Nyquist frequency). Conversion to SINAD is given by SINAD = ENOB
6.02 + 1.76 dB; see
Figure 5
.
[8]
Intermodulation measured relative to either tone with analog input frequencies of 20 and 20.1 MHz. The two input signals have the
same amplitude and the total amplitude of both signals provides full-scale to the converter (
-
6 dB below full scale for each input signal).
d3
(IM3)
is the ratio of the RMS value of either input tone to the RMS value of the worst case third order intermodulation product.
[9]
Output data acquisition: the output data is available after the maximum delay of t
d
; see
Figure 3
.
3-state output delay times; see
Figure 4
t
dZH
enable HIGH
C
-
5.1
9.0
ns
t
dZL
enable LOW
C
-
7.0
11
ns
t
dHZ
disable HIGH
C
-
9.7
14
ns
t
dLZ
disable LOW
C
-
9.5
13
ns
Table 6:
Characteristics
...continued
V
CCA
= V
2
to V
44
, V
3
to V
4
and V
41
to V
40
= 4.75 to 5.25 V; V
CCD
= V
37
to V
38
and V
15
to V
17
= 4.75 to 5.25 V;
V
CCO
= V
33
to V
34
= 3.0 to 3.6 V; AGND and DGND shorted together; T
amb
=
-
40 to 85
C; V
I(p-p)
-
V
I(p-p)
= 1.9 V;
V
ref
= V
CCA3
-
1.75 V; V
I(CM)
= V
CCA3
-
1.6V; typical values measured at V
CCA
= V
CCD
= 5 V and V
CCO
= 3.3 V, T
amb
= 25
C
and C
L
= 10 pF; unless otherwise specified.
Symbol
Parameter
Conditions
Test
[1]
Min
Typ
Max
Unit
THD
20 log
2nd
(
)
2
3rd
(
)
2
4th
(
)
2
5th
(
)
2
6th
(
)
2
+
+
+
+
F
2
--------------------------------------------------------------------------------------------------------------------------------------
=
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
12 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
[1]
Twos complement reference is inverted MSB.
[1]
X = don't care.
Table 7:
Output coding with differential inputs (typical values to AGND);
V
i(p-p)
-
V
i(p-p)
= 1.9 V, V
ref
= V
CCA3
-
1.75 V
Code
V
i(p-p)
V
i(p-p)
IR
Binary outputs
Twos complement
outputs
[1]
D11 to D0
D11 to D0
Underflow
<3.125
>4.075
0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0
3.125
4.075
1
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1
-
-
1
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 1
-
-
2047
3.6
3.6
1
0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
-
-
4094
-
-
1
1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0
4095
4.075
3.125
1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1
Overflow
>4.075
<3.125
0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1
Table 8:
Mode selection
OTC
CE
D0 to D11 and IR
0
0
binary; active
1
0
twos complement; active
X
[1]
1
high-impedance
Table 9:
Sample-and-hold selection
SH
Sample-and-hold
1
active
0
inactive; tracking mode
Fig 3.
Timing diagram.
ds
t
sample N + 1
sample N
CLK
MBG855
sample N + 2
V
l
DATA
D0 to D11
t d
t h
tCLKL
tCLKH
HIGH
LOW
50 %
HIGH
LOW
50 %
DATA
N
+
1
DATA
N
DATA
N
-
1
DATA
N
-
2
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
13 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
f
CE
= 100 kHz.
Fig 4.
Timing diagram and test conditions of 3-state output delay time.
MBG856
50 %
50 %
HIGH
LOW
tdZH
tdHZ
50 %
HIGH
LOW
tdZL
tdLZ
10 %
90 %
output
data
0 V
VCCD
output
data
3.3 k
15 pF
S1
VCCO
TDA8768A
CE
CE
TEST
dLZ
t
dZL
t
dHZ
t
dZH
S1
CCO
V
CCO
V
OGND
OGND
t
(1) 40 Msps
(2) 55 Msps
(3) 70 Msps
(1) 40 Msps
(2) 55 Msps
(3) 70 Msps
Fig 5.
Effective number of bits (ENOB) as a function
of input frequency (sample device).
Fig 6.
Total harmonic distortion (THD) as a function of
input frequency (sample device).
005aaa011
10.4
10.2
9.8
9.4
9
9.6
9.2
10
ENOB
(bits)
10
100
1
fi (MHz)
(1)
(2)
(3)
005aaa012
-
58
-
60
-
64
-
68
-
72
-
66
-
70
-
62
10
100
1
(1)
(2)
(3)
fi (MHz)
THD
(dBFS)
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
14 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
(1) 40 Msps
(2) 55 Msps
(3) 70 Msps
(1) 40 Msps
(2) 55 Msps
(3) 70 Msps
Fig 7.
Spurious free dynamic range (SFDR) as a
function of input frequency (sample device).
Fig 8.
Signal-to-noise ratio (SNR) as a function of
input frequency (sample device).
74
72
68
64
60
66
62
70
SFDR
(dBFS)
10
100
1
fi (MHz)
(1)
(2)
005aaa013
(3)
62
62.5
63
63.5
64
64.5
65
65.5
005aaa014
SNR
(dBFS)
10
100
1
fi (MHz)
(1)
(2)
(3)
Fig 9.
Single-tone; f
i
= 20 MHz; f
CLK
= 55 Msps.
-160
-140
-120
-100
-80
-60
-40
-20
0
005aaa015
0
10
17.5
27.5
2.5
5
7.5
12.5
20
25
22.5
15
measured output range (MHz)
power
spectrum
(dB)
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
15 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 10. Two-tone; f
i1
= 20 MHz; f
i2
= 20.1 MHz; f
CLK
= 55 Msps.
-160
-140
-120
-100
-80
-60
-40
-20
0
0
10
17.5
27.5
2.5
5
7.5
12.5
20
25
22.5
15
measured output range (MHz)
005aaa016
power
spectrum
(dB)
Fig 11. Integral non-linearity (INL).
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
005aaa017
0
2048
3584
512
1024
1536
2560
4096
3072
output code
output
range
(INL)
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
16 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 12. Differential non-linearity (DNL).
005aaa018
0
2048
3584
512
1024
1536
2560
4096
3072
output code
DNL
(LSB)
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
(1) f
i
= 4.43 MHz
(2) f
i
= 20 MHz
(3) SFDR = 80 dB
Fig 13. SFDR as a function of input amplitude; FS = 1.9 V; f
CLK
= 40 MHz.
20
30
40
50
60
70
80
-60
-50
-40
-30
-20
-10
0
005aaa019
Vi (dBFS)
SFDR
(dBFS)
(1)
(2)
(3)
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
17 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
(1) f
i
= 4.43 MHz
(2) f
i
= 20 MHz
(3) SFDR = 80 dB
Fig 14. Spurious free dynamic range (SFDR) as a function of input amplitude; FSREF = 1.9 V; f
CLK
= 55 MHz.
20
30
40
50
60
70
80
-60
-50
-40
-30
-20
-10
0
005aaa020
Vi (dBFS)
SFDR
(dBFS)
(1)
(2)
(3)
(1) = SNR
(2) = ENOB
(3) = SFDR
Fig 15. ENOB, SFDR and SNR as a function of V
ref
;
f
CLK
= 55 MHz; f
i
= 4.43 MHz.
Fig 16. ADC full-scale; V
I(p-p)
-
V
I(p-p)
as a function of
V
CCA
-
V
ref
.
60
62
64
66
68
70
72
1.3 1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
8
8.5
9
9.5
10
10.5
11
005aaa021
(1)
(2)
(3)
Vref (V)
(dB)
bits
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
1.3
1.4 1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
VCCA - Vref (V)
(Vi - Vi)(p-p)
(V)
005aaa022
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
18 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
11. Application information
11.1 Application diagrams
The analog, digital and output supplies should be separated and decoupled.
Fig 17. Application diagram.
FCE003
1
2
3
4
5
6
7
8
9
10
11
12
n.c.
n.c.
n.c.
13 14 15 16 17 18 19 20 21 22
IR
D11
(MSB)
D10
TDA8768A
44 43 42 41 40 39 38 37 36 35 34
33
32
31
30
29
28
26
25
24
23
27
D2
D1
D0 (LSB)
5 V
D3
D4
D5
D6
D7
D8
D9
100 nF
5 V
100
nF
100
nF
output format select
chip select input
5 V
n.c.
n.c.
n.c.
n.c.
n.c.
CLK
100 nF
100 nF
5 V
5 V
SH
mode
VI
VI
10 nF
220 nF
100
100
1:1
Vref
100 nF
Fig 18. Application diagram for differential clock input PECL compatible using a TTL to PECL translator.
D
PECL
270
270
TTL
input
FCE168
CLK
CLK
TDA8768A
MC100
ELT20
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
19 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 19. Application diagram for TTL single-ended clock.
CLK
CLK
TTL
input
TDA8768A
FCE169
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
20 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
11.2 Demonstration board
C8 = close to TR1 pin.
Fig 20. Demonstration board schematic.
FCE733
1
CMADC
V
CCO
34
1
35
36
37
38
39
40
41
42
43
44
22
21
20
19
18
17
16
15
14
FL2
S3
S4
VCC
VCCO
VCC
VCCA
13
12
23
V
CCA1
2
V
CCA3
3
AGDN3
4
DEC
5
n.c.
6
n.c.
7
n.c.
8
9
11
n.c.
n.c.
10
V
ref
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
33
OGND
CLK
CLK
VCCD1
DGND1
SH
AGND4
VCCA4
Vi
Vi
AGND1
C15 10 nF
C6
330 nF
C13
100 nF
C16
10
nF
C10
100
nF
C11
100 nF
R6
2.4 k
P2
R7
1 k
P1
5 k
1.2 k
S2
C18
10 nF
C5
330 nF
R9
100
R3
50
C17
10 nF
C9
220 nF
C8
330 nF
D10
D11
IR
CE
OTC
DGND2
n.c
VCCD2
n.c
n.c
FSref
32
31
30
29
28
27
26
25
24
IC2
TDA8768A
S1
S5
CLK
TR1
J1
J3
CMADC
CLK1
IN
MCLT1_6T_KK81
FL4
VCC
R1
100
C7
330 nF
FL3
3
2
4
6
8
10
12
14
16
5
7
9
11
13
15
17
19
21
23
18
20
22
24
C4
1
F
C3
1
F
D2
R5
4.7
k
R2
82
3
1
J4
1
J4
2
GND
BYD17G
D3
IC1
MC78MO5CDT
OUT
IN
12 V
C2
4.7
F
(16 V)
BZV55C3V6
VCCO
VCCO
TP2
VCC
TM3
T1
PMBT
2222A
VCC
C1
22
F
(20 V)
GND
LGT679
D1
750
R8
VCCA
R4
50
B11
J2
CLK2
10 nF
C19
VCCA
B7
B5
VCCA
VCCD
C14
100 nF
C12
100 nF
FL1
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
21 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 21. Component placement (top side).
MSD808
F68A21
J4
C4
C5
D2
TP2
P2
C3
D3
R2
R5
R7
R4
R6
C11
C10
C14
P1
R1
R3
J3
J2
J1
1
1
1
1
1
112
23
34
C12
S2
S5
S1
S3 S4
B7
B4
B5
B8
B11
C7
C9
R9
FL4
FL2
T1
TM3
TM2
TM1
C2
C1
IC1
IC2
TR1
R8
D1
1
2
Fig 22. Component placement (underside).
MSD809
F68A22
C6
FL1
FL3
C8
C13
C17
C15
C19
C16
C18
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
22 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 23. PCB layout (top layer).
FCE725
Fig 24. PCB layout (ground layer).
FCE726
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
23 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
12. Support information
12.1 Definitions
12.1.1
Non-linearities
Integral Non-Linearity (INL).:
It is defined as the deviation of the transfer function
from a best fit straight line (linear regression computation). The INL of the code i is
obtained from the equation:
where
and
S = slope of the ideal straight line = code width; i = code value.
Differential Non-Linearity (DNL).:
It is the deviation in code width from the value of
1LSB.
where
Fig 25. PCB layout (power plane).
FCE727
INL i
( )
V
in
i
( )
V
in
ideal
(
)
S
-----------------------------------------------
=
i
0
2
n
1
(
)
=
DNL i
( )
V
in
i
1
+
(
)
V
in
i
( )
S
---------------------------------------------
1
=
i
0
2
n
2
(
)
=
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
24 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
12.1.2
Dynamic parameters (single tone)
Figure 26
shows the spectrum of a full-scale input sine wave with frequency f
t
,
conforming to coherent sampling (f
t/
f
s
= M/N, where M is the number of cycles and N
is number of samples, M and N being relatively prime), and digitized by the ADC
under test.
Remark: in the following equations, P
noise
is the power of the terms which include the
effects of random noise, non-linearities, sampling time errors, and "quantization
noise".
Signal-to-noise and distortion (SINAD):
The ratio of the output signal power to the
noise plus distortion power for a given sample rate and input frequency, excluding the
DC component:
Effective Number of Bits (ENOB):
It is derived from SINAD and gives the
theoretical resolution an ideal ADC would require to obtain the same SINAD
measured on the real ADC. A good approximation gives:
Total Harmonic Distortion (THD):
The ratio of the power of the harmonics to the
power of the fundamental. For k-1 harmonics the THD is:
where
The value of k is usually 6 (i.e. calculation of THD is done on the first 5 harmonics).
Fig 26. Spectrum of full-scale input sine wave with frequency f
t
.
magnitude
fs/2
SFDR
a1
a2
a3
ak
s
FCE710
measured output range
SINAD db
[ ]
10
P
signal
P
noise
distortion
+
------------------------------------------
log
=
ENOB
SINAD dB
[
]
1 76
(
)
(
)
6 02
(
)
/
=
THD dB
[
]
10
P
harmonics
P
signal
---------------------------
log
=
P
harmonics
a
2
2
a
3
2
a
k
2
+
+
=
P
signal
a
1
2
=
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
25 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Signal-to-Noise Ratio (SNR):
The ratio of the output signal power to the noise
power, excluding the harmonics and the DC component.
Spurious Free Dynamic Range (SFDR):
The number SFDR specifies available
signal range as the spectral distance between the amplitude of the fundamental and
the amplitude of the largest spurious (harmonic and non-harmonic, excluding DC
component.
12.1.3
Intermodulation distortion
Spectral analysis (dual-tone)
From a dual-tone input sinusoid (f
t1
and f
t2
, these frequencies being chosen
according to the coherence criterion), the intermodulation distortion products IMD2
and IMD3 (respectively, 2nd and 3rd-order components) are defined, as follows.
IMD2 (IMD3):
The ratio of the RMS value of either tone to the RMS value of the worst
second (third) order intermodulation product.
SNR dB
[
]
10
P
signal
P
noise
-----------------
log
=
SFDR dB
[
]
20
a
1
max s
( )
------------------
log
=
Fig 27. Spectral analysis (dual-tone)
-160
-140
-120
-100
-80
-60
-40
-20
0
0
10
17.5
27.5
2.5
5
7.5
12.5
20
25
22.5
15
measured output range (MHz)
(dB)
005aaa023
IMD3
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
26 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
The total intermodulation distortion IMD is given by
where,
and
is the power in the intermodulation component at frequency f
t
.
12.1.4
Noise Power Ratio (NPR)
When using a notch-filtered broadband white-noise generator as the input to the ADC
under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch
to the in-notch power spectral density magnitudes for the FFT spectrum of the ADC
output sample set.
IMD dB
[
]
10
P
intermod
P
signal
-----------------------
log
=
P
intermod
a
im
2
f
t 1
f
t 2
(
)
a
im
2
f
t 1
f
t 2
+
(
)
a
im
2
f
t 1
2 f
t 2
(
)
a
im
2
f
t 1
2 f
t 2
+
(
)
a
im
2
2 f
t 1
f
t 2
(
)
a
im
2
2 f
t 1
f
t 2
+
(
)
+
+
+
+
=
P
signal
a
2
f
t 1
(
)
a
2
f
t 2
(
)
+
=
a
im
2
f
t
( )
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
27 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
13. Package outline
Fig 28. SOT307-2.
UNIT
A
1
A
2
A
3
b
p
c
E
(1)
e
H
E
L
L
p
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
0.25
0.05
1.85
1.65
0.25
0.40
0.20
0.25
0.14
10.1
9.9
0.8
1.3
12.9
12.3
1.2
0.8
10
0
o
o
0.15
0.1
0.15
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.95
0.55
SOT307-2
95-02-04
97-08-01
D
(1)
(1)
(1)
10.1
9.9
H
D
12.9
12.3
E
Z
1.2
0.8
D
e
E
B
11
c
E
H
D
ZD
A
Z E
e
v
M
A
X
1
44
34
33
23
22
12
y
A
1
A
L
p
detail X
L
(A )
3
A
2
pin 1 index
D
H
v
M
B
b
p
b
p
w
M
w
M
0
2.5
5 mm
scale
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm
SOT307-2
A
max.
2.10
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
28 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
14. Handling information
Inputs and outputs are protected against electrostatic discharge in normal handling.
However, to be completely safe, it is desirable to take normal precautions appropriate
to handling integrated circuits.
15. Soldering
15.1 Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account
of soldering ICs can be found in our
Data Handbook IC26; Integrated Circuit
Packages (document order number 9398 652 90011).
There is no soldering method that is ideal for all surface mount IC packages. Wave
soldering can still be used for certain surface mount ICs, but it is not suitable for fine
pitch SMDs. In these situations reflow soldering is recommended.
15.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and
binding agent) to be applied to the printed-circuit board by screen printing, stencilling
or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared
heating in a conveyor type oven. Throughput times (preheating, soldering and
cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250
C. The top-surface
temperature of the packages should preferable be kept below 220
C for thick/large
packages, and below 235
C small/thin packages.
15.3 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices
(SMDs) or printed-circuit boards with a high component density, as solder bridging
and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically
developed.
If wave soldering is used the following conditions must be observed for optimal
results:
Use a double-wave soldering method comprising a turbulent wave with high
upward pressure followed by a smooth laminar wave.
For packages with leads on two sides and a pitch (e):
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board.
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
29 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
The footprint must incorporate solder thieves at the downstream end.
For packages with leads on four sides, the footprint must be placed at a 45
angle
to the transport direction of the printed-circuit board. The footprint must
incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250
C. A mildly-activated flux will eliminate the
need for removal of corrosive residues in most applications.
15.4 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time
must be limited to 10 seconds at up to 300
C.
When using a dedicated tool, all other leads can be soldered in one operation within
2 to 5 seconds between 270 and 320
C.
15.5 Package related soldering information
[1]
For more detailed information on the BGA packages refer to the
(LF)BGA Application Note
(AN01026); order a copy from your Philips Semiconductors sales office.
[2]
All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal
or external package cracks may occur due to vaporization of the moisture in them (the so called
popcorn effect). For details, refer to the Drypack information in the
Data Handbook IC26; Integrated
Circuit Packages; Section: Packing Methods.
[3]
These packages are not suitable for wave soldering. On versions with the heatsink on the bottom
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with
the heatsink on the top side, the solder might be deposited on the heatsink surface.
[4]
If wave soldering is considered, then the package must be placed at a 45
angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[5]
Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[6]
Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
Table 10:
Suitability of surface mount IC packages for wave and reflow soldering
methods
Package
[1]
Soldering method
Wave
Reflow
[2]
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA
not suitable
suitable
HBCC, HBGA, HLQFP, HSQFP, HSOP,
HTQFP, HTSSOP, HVQFN, HVSON, SMS
not suitable
[3]
suitable
PLCC
[4]
, SO, SOJ
suitable
suitable
LQFP, QFP, TQFP
not recommended
[4][5]
suitable
SSOP, TSSOP, VSO
not recommended
[6]
suitable
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Product data
Rev. 02 -- 03 July 2002
30 of 32
9397 750 09656
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
16. Revision history
Table 11:
Revision history
Rev Date
CPCN
Description
02
20020703
-
Product data (9397 750 09656); supersedes Preliminary specification TDA8768A_1 of
20020409 (9397 750 08323)
Modifications:
Raise to Product
Features list corrected
Change value of INL in Table 6.
01
20020409
-
Preliminary data; initial version.
9397 750 09656
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Product data
Rev. 02 -- 03 July 2002
31 of 32
Contact information
For additional information, please visit http://www.semiconductors.philips.com.
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.
Fax: +31 40 27 24825
17. Data sheet status
[1]
Please consult the most recently issued data sheet before initiating or completing a design.
[2]
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
18. Definitions
Short-form specification -- The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition -- Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information -- Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
19. Disclaimers
Life support -- These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Right to make changes -- Philips Semiconductors reserves the right to
make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve
design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
Data sheet status
[1]
Product status
[2]
Definition
Objective data
Development
This data sheet contains data from the objective specification for product development. Philips Semiconductors
reserves the right to change the specification in any manner without notice.
Preliminary data
Qualification
This data sheet contains data from the preliminary specification. Supplementary data will be published at a
later date. Philips Semiconductors reserves the right to change the specification without notice, in order to
improve the design and supply the best possible product.
Product data
Production
This data sheet contains data from the product specification. Philips Semiconductors reserves the right to
make changes at any time in order to improve the design, manufacturing and supply. Changes will be
communicated according to the Customer Product/Process Change Notification (CPCN) procedure
SNW-SQ-650A.
Koninklijke Philips Electronics N.V. 2002.
Printed in The Netherlands
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner.
The information presented in this document does not form part of any quotation or
contract, is believed to be accurate and reliable and may be changed without notice. No
liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent- or other industrial or
intellectual property rights.
Date of release: 03 July 2002
Document order number: 9397 750 09656
Contents
Philips Semiconductors
TDA8768A
12-bit, 70 Msps Analog-to-Digital Converter (ADC)
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2
5
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
6
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
7
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
7.1
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
9
Thermal characteristics. . . . . . . . . . . . . . . . . . . 6
10
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 6
11
Application information. . . . . . . . . . . . . . . . . . 18
11.1
Application diagrams . . . . . . . . . . . . . . . . . . . 18
11.2
Demonstration board . . . . . . . . . . . . . . . . . . . 20
12
Support information . . . . . . . . . . . . . . . . . . . . 23
12.1
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.1.1
Non-linearities. . . . . . . . . . . . . . . . . . . . . . . . . 23
12.1.2
Dynamic parameters (single tone) . . . . . . . . . 24
12.1.3
Intermodulation distortion . . . . . . . . . . . . . . . . 25
12.1.4
Noise Power Ratio (NPR) . . . . . . . . . . . . . . . . 26
13
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 27
14
Handling information. . . . . . . . . . . . . . . . . . . . 28
15
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
15.1
Introduction to soldering surface mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
15.2
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 28
15.3
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 28
15.4
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 29
15.5
Package related soldering information . . . . . . 29
16
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 30
17
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 31
18
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
19
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31