ChipFind - документация

Электронный компонент: GP1A71R

Скачать:  PDF   ZIP
GP1A70R/GP1A71R
s
Features
s
Outline Dimensions
( Unit : mm)
3. PWB mounting type
( Lead bending type )
1. Printers
2. Copiers
3. Numerical control machines
s
Absolute Maximum Ratings
( Ta = 25C)
*2 For 5 seconds
12.5
6.0
6.0
GP1A70R
7.2
0.75
10.5
13.0
(6.56)
12.0
( 2.54
)
Internal connection diagram
OPIC
2
-
C0.2
2
-
(1.75)
3
-
( 1.27
)
*
Tolerance
:
0.3mm
*
( )
:
Reference dimensions
1
2
3
4
5
6
1
2
3 4
5 6
1 Anode
2 Cathode
4 GND
(
GP1A70R
Disk slit pitch : 1.14mm )
(
GP1A71R
Disk slit pitch : 0.7mm )
1. 2-phase ( A, B ) digital output
2. Sensing accuracy
Symbol
Rating
Unit
Input
Forward current
I
F
50
mA
*1
Peak forward current
I
FM
1
A
V
R
6
V
Power dissipation
P
75
mW
Output
Supply voltage
V
CC
7
V
Low level output current
I
OL
20
mA
Power dissipation
P
O
250
mW
Operating temperature
T
opr
0 to + 70
C
Storage temperature
T
stg
- 40 to + 80
C
*2
Soldering temperature
T
sol
260
C
OPIC Photointerrupter with
An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
*"OPIC " ( Optical IC ) is a trademark of the SHARP Corporation.
GP1A70R/GP1A71R
Encoder Functions
s
Applications
4. TTL compatible output
5. Compact, lightweight
1
2
3
4
5
6
Parameter
Reverse voltage
*1 Pulse width<=100
s, Duty ratio 0.01
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
"
"
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
3 V
OB
5 V
CC
6 V
OA
2
-
2.0
0.1
2.5
MIN.
6.5
0.15
2.0
+
0.2
-
0.1
4.0
0.1
*3 Measured under the condition shown in Measurement Conditions.
( Ta = 25C unless otherwise specified )
s
Output Waveforms
Parameter
Symbol
Input
Forward voltage
V
F
Reverse current
I
R
Output
Operating supply voltage
V
CC
High level output voltage
V
OH
Low level output voltage
V
OL
Supply current
I
CC
Transfer
charac-
teristics
Duty ratio
GP1A70R
*5
D
A
, D
B
GP1A71R
Response frequency
f
MAX.
t
AH
t
AP
t
BH
t
BP
Output A
( V
OA
)
Output B
( V
OB
)
Rotational direction
:
Counterclockwise when seen
Conditions
MIN.
TYP.
MAX.
Unit
I
F
= 20mA, Ta= 25C
-
1.2
1.4
V
-
-
10
A
4.5
5.0
5.5
V
*3
V
CC
= 5V, I
F
= 20mA
2.4
4.9
-
V
-
0.1
0.4
V
*4
V
CC
= 5V, I
F
= 20mA
-
5
20
mA
25
50
75
%
50
%
*3
V
CC
= 5V, I
F
= 20mA
-
-
10
kHz
GP1A70R/GP1A71R
V
R
= 3V, Ta= 25C
*3
I
OL
= 8mA, V
CC
= 5V, I
F
= 20mA
*3
V
CC
= 5V, I
F
= 20mA, f = 2.5kHz
t
AH
t
AP
t
BH
t
BP
*4 In the condition that output A and B are low level.
*5 D
A
:
x 100, D
B
:
x 100, Duty ratio : Average disk rotation time per turn
from OPIC light detector
0
10
20
30
40
50
60
100
75
50
25
0
70
Forward current I
F
(
mA
)
Ambient temperature T
a
(C)
Fig. 1 Forward Current vs. Ambient
Temperature
300
250
200
150
100
50
0
Output power dissipation P
O
(
mW
)
Ambient temperature T
a
( C)
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
t
AB1
75
100
75
50
25
0
70
25
s
Electro-optical Characteristics
1
10
2
5
Frequency f ( kHz )
Duty ratio
(
%
)
70
80
20
30
40
50
60
90
80
70
100
110
120
130
5
2
10
1
Duty ratio
(
%
)
60
50
40
30
20
80
70
10
20
30
0
40
50
60
70
1
2
5
10
20
30
40
50
60
70
80
Duty ratio
(
%
)
Frequency f ( kHz )
1
2
5
10
70
80
90
100
110
120
130
x 360
0
20
70
20
30
40
50
60
70
80
Duty ratio
(
%
)
60
50
40
30
10
t
t
AP
=
360
t
AB1
t
AP
AB1
=
Ambient temperature T
a
(C)
Ambient temperature T
a
( C)
GP1A70R/GP1A71R
f= 2.5kHz
f= 2.5kHz
Fig. 3-a Duty Ratio vs. Frequency
(GP1A70R)
Fig. 3-b Duty Ratio vs. Frequency
(GP1A71R)
Fig. 4-a Phase Difference vs. Frequency
(GP1A70R )
Frequency f ( kHz )
Fig. 4-b Phase Difference vs. Freauency
(GP1A71R )
Phase difference
AB1
(
deg.
)
Frequency f ( kHz )
Fig. 5-a Duty Ratio vs.
Ambient Temperature
(GP1A70R )
Fig. 5-b Duty Ratio vs.
Ambient Temperature
(GP1A71R)
Phase difference
ABI
(
deg.
)
x 100 ( Output A )
x 100 ( Output B )
t
AH
t
AP
t
BH
t
BP
V
CC
= 5V
I
F
= 20mA
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
T
a
= 25C
x 100 ( Output A )
t
AH
t
AP
x 100 ( Output B )
t
BH
t
BP
I
F
= 20mA
V
CC
= 5V
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
V
CC
= 5V
I
F
= 20mA
x 100 ( Output A )
x 100 (Output B )
t
AH
t
AP
t
BH
t
BP
x 100 (Output A )
x 100 (Output B )
t
AH
t
AP
t
BH
t
BP
V
CC
= 5V
I
F
= 20mA
AB1
AB1
70
60
50
40
0
30
20
10
130
120
110
100
90
80
70
Distance X ( mm ) ( Shifting encoder )
70
80
20
30
40
50
60
Duty ratio
(
%
)
1.0
0
- 1.0
( + )
( - )
GP1A70R
Disk
Reference position
Distance X ( mm ) ( Shifting encoder )
- 1.0
0
1.0
70
80
90
100
110
120
130
0
20
70
70
80
90
100
110
120
130
60
50
40
30
10
- 1.0
1.0
20
30
40
50
60
70
80
Duty ratio
(
%
)
Distance X ( mm) ( Shifting encoder )
0
- 1.0
1.0
80
90
100
110
120
130
140
Distance X ( mm ) ( Shifting encoder)
0
( + )
( - )
Reference position
GP1A71R
Disk
Ambient temperature T
a
(C)
Ambient temperature T
a
( C)
Phase difference
ABI
Phase difference
AB1
GP1A70R/GP1A71R
Fig. 6-a Phase Difference vs. Ambient
Temperature
Fig. 6-b Phase Difference vs. Ambient
Temperature
Phase difference
AB1
(
deg.
)
Fig. 7-a Duty Ratio vs.
Distance ( Xdirection )
(GP1A70R )
Fig. 7-b Duty Ratio vs.
Distance (X direction )
(GP1A71R)
Fig. 8-a Phase Difference vs. Distance
( X direction )
(GP1A70R )
(
deg.
)
Phase difference
ABI
(
deg.
)
Fig. 8-b Phase Difference vs. Distance
( X direction )
(GP1A71R )
(
deg.
)
x 100 ( Output A )
x 100 ( Output B )
t
AH
t
AP
t
BH
t
BP
t
t
AP
=
360
AB1
AB1
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f = 2.5kHz
t
t
AP
=
360
AB1
AB1
t
t
AP
=
360
AB1
AB1
t
t
AP
=
360
AB1
AB1
x
x
x
100 ( Output A )
x
x
x
100 ( Output B )
t
AH
t
AP
t
BH
t
BP
- 1.0
0
1.0
Duty ratio
(
%
)
60
50
40
30
20
80
70
Distance Y ( mm ) ( Shifting encoder )
position
130
120
110
100
90
80
70
1.0
0
- 1.0
Distance Y ( mm) ( Shifting encoder )
Disk
GP1A70R
( - )
( + )
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Distance Z ( mm ) ( Shifting encoder)
70
80
20
30
40
50
60
Duty ratio
(
%
)
0
- 1.0
1.0
20
30
40
50
60
70
80
Duty ratio
(
%
)
Distance Y ( mm ) ( Shifting encoder )
0
- 1.0
1.0
80
90
100
110
120
130
140
Distance Y ( mm ) ( Shifting encoder )
0
( + )
( - )
Reference
GP1A71R
Disk
position
0
20
30
40
50
60
70
80
Duty ratio
(
%
)
Distance Z ( mm ) ( Shifting encoder )
0.1
0.9
0.7
0.6
0.8
0.1
0.5
0.4
0.3
0.2
Phase difference
ABI
Phase difference
AB1
GP1A70R/GP1A71R
Fig. 9-a Duty Ratio vs.
Distance ( Ydirection )
(GP1A70R )
Fig. 9-b Duty Ratio vs.
Distance ( Y direction )
(GP1A71R )
(GP1A70R )
(
deg.
)
Reference
Fig.10-b Phase Difference vs. Distance
( Y direction )
(GP1A71R )
Fig.10-a Phase Difference vs. Distance
( Y direction )
(
deg.
)
Fig.11-a Duty Ratio vs.
Distance (Z direction )
(GP1A70R )
(GP1A71R )
Fig.11-b Duty Ratio vs.
Distance ( Z direction )
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
x 100 ( Output A )
t
AH
t
AP
x
x
x
100 ( Output B )
t
BH
t
BP
x 100 ( Output A )
t
AH
t
AP
x 100 ( Output B )
t
BH
t
BP
x 100 ( Output A )
t
AH
t
AP
x 100 ( Output B )
t
BH
t
BP
x 100 ( Output A )
t
AH
t
AP
x 100 ( Output B )
t
BH
t
BP
t
t
AP
=
360
AB1
AB1
t
t
AP
=
360
AB1
AB1
Z
OPIC
( Emitting side)
(Detecting side)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
GP1A70R
Disk
Distance Z ( mm ) ( Shifting encoder)
70
80
90
100
110
120
60
0
0.8
80
90
100
110
120
130
140
Distance Z ( mm ) ( Shifting encoder)
0.1
GP1A71R
0.7
0.6
0.5
0.4
0.3
0.2
OPIC
(Detecting side )
( Emitting side )
Z
Disk
Phase difference
ABI
Phase difference
AB1
GP1A70R/GP1A71R
6
3
R10.89
R13.24
Disk center
13
6
8.625
4
S
GP1A70R
X'
10.5
6.5
2.0
0.75
0.1
7.2
0.5
X'
0.3
0.1
11.185
4
S
Disk center
R13.45
1.5
R15.8
GP1A71R
13
6
3
10.5
2.0
0.75
6.5
7.2
<Measurement Conditions>
( Unit : mm )
X
X
< GP1A70R Basic Design>
a slit ) and S (installing position of GP1A70R) will be
provided by the following equations.
R =N
O
R
O
(distance between the disk center and half point of
S
=
R
O
-
2.265 (mm)
< GP1A71R Basic Design>
R
O
(distance between the disk center and half point of
a slit ) and S (installing position of GP1A71R) will be
provided by the following equations.
S
=
R
O
-
2.265(mm)
R
O
(GP1A70R )
Fig.12-a Phase Difference vs. Distance
( Z direction )
(
deg.
)
Fig.12-b Phase Difference vs. Distance
( Z direction )
(GP1A71R )
(
deg.
)
=
N/120
x
13.45 (mm) N
:
number of slits
/60
x
10.89 (mm )
N
:
number of slits
s
Precautions for Use
( 2) It is recommended that a by-pass capacitor of more than 0.01
F be added
between V
CC
and GND near the device in order to stabilize power supply line.
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
V
CC
= 5V
I
F
= 20mA
f= 2.5kHz
T
a
= 25C
t
t
AP
=
360
AB1
AB1
t
t
AP
=
360
x
x
AB1
AB1
R
O
R
O
( 1) This device is designed to be used under the condition of I
F
= 20mA
( 3) As for other general cautions, refer to the chapter " Precautions for Use" .