ChipFind - документация

Электронный компонент: PC3H2A

Скачать:  PDF   ZIP
PC3H2/PC3Q62
PC3H2/PC3Q62
s
Package Specifications
s
Outline Dimensions
(Unit : mm)
High Resistance to Noise,
Half Pitch Photocoupler
1. Programmable controllers
s
Features
s
Applications
1. Half pitch surface mount type for high density mounting
(Lead pitch : 1.27 mm)
2. High resistance to noise due to high common mode rejection
voltage (CMR : MIN.10kV/
s)
3. Soldering reflow type (230
C, for 30seconds)
4. High temperature tested model
5. Taping package
PC3H2
(1ch)
PC3Q62
(4ch)
6. Recognized by UL, file No. E64380
Model No.
Package specification
PC3H2
PC3Q62
Taping reel diameter 330mm (1 000pcs)
Taping reel diameter 330mm (3 000pcs)
s
Absolute Maximum Ratings
0.2mm or more
Soldering area
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet
Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
PC3H2
PC3Q62
Parameter
Symbol
Rating
Unit
Input
Forward current
50
1
mA
A
6
V
Output
70
150
mW
mW
170
mW
70
6
V
V
50
mA
-
30 to
+
100
C
Tstg Storage temperature
-
40 to
+
125
C
260
C
Operating temperature
Reverse voltage
Peak forward current
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector dissipation
I
F
V
R
I
FM
P
V
CEO
V
ECO
I
C
P
C
T
stg
T
opr
P
tot
(Ta
=
25C)
Soldering temperature
T
SOL
2.5
kV
rms
Viso Isolation voltage
V
iso
*1
*1
*1
*1
*1
*3
*4
*2
*1 The derating factors of absolute maximum ratings due to ambient temperature
are shown in Fig.2 to 5
*2 Pulse width
<=
100
s, Duty ratio:0.01, Refer to Fig.6
*3 AC for 1min., 40 to 60% RH, f
=
60Hz
*4 For 10s
Total power dissipation
S
3 H 2
1
2
4
3
4
2
1
3
4.4
0.2
5.3
0.3
0.2
0.05
7.0
+
0.2
-
0.7
(1.7)
1.27
0.25
2.6
0.3
0.4
0.1
0.5
+
0.4
-
0.2
2.0
0.2
0.1
0.1
1
2
3
4
Anode
Cathode
Emitter
Collector
Internal connection diagram
g
( ) : Reference dimensions
Anode mark
Epoxy
resin
Parting line
C0.4
6
10.3
0.3
1.27
0.25
4.4
0.2
16
1
8
9
0.5
+
0.4
-
0.2
7.0
+
0.2
-
0.7
0.4
0.1
2.6
0.2
0.1
0.1
0.2
0.05
5.3
0.3
S
P C 3 Q 6 2
Primary
Side
mark
Epoxy resin
1
2
3
4
5
6
7
8
16
1 3 5 7
Anode
2 4 6 8
Cathode
9 11 13 15
Emitter
10 12 14 16
Collector
15
14
13
12
11
10
9
Internal connection diagram
PC3H2/PC3Q62
s
Electro-optical Characteristics
Parameter
Conditions
Input
Forward voltage
I
F
=
20mA
V
R
=
4V
Terminal capacitance
Output
PC3H2
PC3Q62
Collector-emitter
I
C
=
0.1mA
I
F
=
0
Emitter-collector
I
E
=
10
A, I
F
=
0
Ta
=
25C, R
L
=
470
V
CM
=
1.5kV(peak)
I
F
=
0mA,V
CC
=
9V,
Vnp
=
100mV
Transfer
charac-
teristics
Collector current
I
F
=
1mA
V
CE
=
5V
Collector-emitter
saturation voltage
I
F
=
20mA
I
C
=
1mA
Isolation resistance
DC500V
40 to 60%RH
Floating capacitance
Common mode rejection voltage
V
=
0, f
=
1MHz
Response time
Rise time
Fall time
MIN.
-
-
-
-
-
70
6
0.2
-
5
10
10
-
-
-
TYP.
1.2
30
-
-
-
-
0.1
1
10
11
0.6
4
3
MAX.
1.4
10
250
100
-
-
4.0
0.2
-
1.0
18
18
Collector dark current
breakdown voltage
breakdown voltage
Symbol
V
F
I
R
C
t
I
CEO
BV
CEO
BV
ECO
I
C
V
CE(sat)
C
f
t
r
t
f
R
ISO
CMR
V
=
0, f
=
1kHz
Unit
V
nA
A
V
V
mA
10
-
-
kV/
s
V
pF
pF
s
s
V
CE
=
2V
I
C
=
2mA
R
L
=
100
(Ta
=
25C)
V
CE
=
50V, I
F
=
0
V
CE
=
20V, I
F
=
0
Reverse current
*5 Refer to Fig.1
*5
Fig.1 Test Circuit for Common Mode Rejection Voltage
V
CM
V
cp
V
np
V
O
(dV/d
t
)
1)
R
L
V
np
V
CC
V
CM
1) V
cp
: Voltage which is generated by displacement current in floating
capacitance between primary and secondary side.
(V
cp
Nearly
=
dV/d
t
C
f
R
L
)
V
CM :
High wave
pulse
R
L
=
470
V
CC
=
9V
PC3H2/PC3Q62
Forward voltage V
F
(V)
50
C
25
C
0
C
0
2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
5
10
20
50
100
200
500
1
-
25
C
Ta
=
75C
F
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F

(
m
A
)
Pulse width
<=
100
s
T
a
=
25
C
P
e
a
k

f
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F
M

(
m
A
)
10
20
50
100
200
2000
500
1000
5
2
10
-
3
5
2
10
-
2
5
2
10
-
2
5
1
Duty ratio
T
o
t
a
l

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P
t
o
t

(
m
W
)
0
50
100
150
200
250
170
-
30
0
25
50
75
100
125
Ambient temperature T
a
(
C)
Fig.5 Total Power Dissipation vs. Ambient
Temperature
C
o
l
l
e
c
t
o
r

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P
C

(
m
W
)
0
50
100
150
200
250
-
30
0
25
50
75
100
125
Ambient temperature T
a
(
C)
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
Fig.7 Forward Current vs. Forward Voltage
Fig.6 Peak Forward Current vs. Duty Ratio
F
o
r
w
a
r
d

c
u
r
r
e
n
t

I
F

(
m
A
)
0
10
20
30
40
50
-
30
0
25
75
100
125
55
50
Ambient temperature T
a
(
C)
0
20
40
60
70
80
100
-
30
0
25
75
100
125
55
50
Ambient temperature T
a
(
C)
D
i
o
d
e

p
o
w
e
r

d
i
s
s
i
p
a
t
i
o
n

P

(
m
W
)
Fig.2 Forward Current vs. Ambient
Temperature
Fig.3 Diode Power Dissipation vs. Ambient
Temperature
PC3H2/PC3Q62
R
e
l
a
t
i
v
e

c
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

(
%
)
0
150
100
50
-
40
-
20
0
20
40
60
80
100
Ambient temperature T
a
(
C)
I
F
=
1mA
V
CE
=
5V
t
d
t
r
t
f
t
s
R
e
s
p
o
n
s
e

t
i
m
e

(
s
)
0.1
1.0
10.0
100.0
0.1
1
10
Load resistance R
L
(k
)
V
CE
=
2V
I
C
=
2mA
T
a
=
25
C
C
o
l
l
e
c
t
o
r
-
e
m
i
t
t
e
r

s
a
t
u
r
a
t
i
o
n
v
o
l
t
a
g
e

V
C
E

(
s
a
t
)

(
V
)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
-
40
-
20
0
20
40
60
80
100
Ambient temperaturet T
a
(
C)
I
F
=
20mA
I
C
=
1mA
C
o
l
l
e
c
t
o
r

d
a
r
k

c
u
r
r
e
n
t

I
C
E
O

(
A
)
10
-
9
10
-
8
10
-
7
10
-
6
10
-
5
10
-
4
-
40
-
20
0
20
40
60
80
100
Ambient temperature T
a
(
C)
V
CE
=
50V
Fig.10 Relative Current Transfer Ratio vs.
Ambient Temperature
Fig.11 Collector-emitter Saturation
Voltage vs. Ambient Temperature
Fig.13 Response Time vs. Load Resistance
Fig.12 Collector Dark Current vs. Ambient
Temperature
C
u
r
r
e
n
t

t
r
a
n
s
f
e
r

r
a
t
i
o

C
T
R

(
%
)
0
100
200
300
1
10
100
Forward current I
F
(mA)
V
CE
=
5V
T
a
=
25
C
I
F
=
30mA
20mA
P
C
(max)
10mA
5mA
1mA
C
o
l
l
e
c
t
o
r

c
u
r
r
e
n
t

I
C

(
m
A
)
0
10
20
30
40
50
0
2
4
6
8
10
Collector-emitter voltage V
CE
(V)
T
a
=
25
C
Fig.8 Current Transfer Ratio vs. Forward
Current
Fig.9 Collector Current vs. Collector-emitter
Voltage
PC3H2/PC3Q62
Fig.14 Test Circuit for Response Time
I
C
=
0.5mA
7mA
5mA
3mA
1mA
0
1
2
3
4
5
0
3
6
9
12
15
Forward current I
F
(mA)
C
o
l
l
e
c
t
o
r
-
e
m
i
t
t
e
r

s
a
t
u
r
a
t
i
o
n

v
o
l
t
a
g
e
V
C
E

(
s
a
t
)

(
V
)
T
a
=
25
C
Fig.16 Collector-emitter Saturation Voltage
vs. Forward Current
Fig.17 Reflow Soldering
-
20
-
10
0
V
o
l
t
a
g
e

g
a
i
n

A
V

(
d
B
)
0.1
1
10
100
1000
Frequency Response f (kHz)
V
CE
=
5V
I
C
=
2mA
T
a
=
25
C
R
L
=
10k
1k
100
Fig.15 Voltage Gain vs Frequency
10%
Input
Output
Input
Output
90%
t
s
t
d
V
CC
R
D
R
L
t
f
t
r
25
C
2min
230
C
200
C
180
C
1min
1min
1.5min
30s
Only one time soldering is recommended within the temperature
profile shown below.