ChipFind - документация

Электронный компонент: PQ018EZ5MZP

Скачать:  PDF   ZIP
PQxxxEZ5MZ Series/
PQxxxEZ01Z Series
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
s
Model Line-up
s
Outline Dimensions
(Unit : mm)
Output voltage (V
O
)
1.8V
1.5V
2.5V
Package
type
Taping
Sleeve
Taping
Sleeve
0.5A
1A
PQ015EZ01ZZ
PQ015EZ01ZP
PQ015EZ5MZZ
PQ015EZ5MZP
PQ018EZ01ZZ
PQ018EZ01ZP
PQ018EZ5MZZ
PQ018EZ5MZP
PQ030EZ01ZZ
PQ030EZ01ZP
PQ030EZ5MZZ
PQ030EZ5MZP
PQ033EZ01ZZ
PQ033EZ01ZP
PQ033EZ5MZZ
PQ033EZ5MZP
PQ025EZ01ZZ
PQ025EZ01ZP
PQ025EZ5MZZ
PQ025EZ5MZP
Output
current (I
O
)
3.3V
3V
Taping
Sleeve
Taping
Sleeve
0.5A
1A
s
Absolute Maximum Ratings
Parameter
Symbol
Rating
Unit
Input voltage
10
V
V
10
150
C
-
40 to
+
85
C
Junction temperature
V
IN
Output control voltage
V
C
0.5
A
Output
current
PQxxxEZ5MZ Series
1
PQxxxEZ01Z Series
I
O
T
j
(Ta
=
25
C)
Operating temperature
Storage temperature
Soldering temperature
T
opr
-
40 to
+
150
C
T
stg
260 (10s)
C
T
sol
*1
*3
Power dissipation
*2
*1 All are open except GND and applicable terminals
*2 P
D
:With infinite heat sink
*3 Overheat protection may operate at the condition Tj
=
125C to 150C
8
W
P
D
1. Peripheral equipment of personal computers
2. Power supplies for various electronic equipment such as
DVD player or STB
s
Features
s
Applications
SC-63 Package, Low Voltage
Operation, Low Power-Loss
Voltage Regulator
1. Low voltage operation (Minimum operating voltage:2.35V)
2.5V input
available 1.5 to 1.8V
2. Low dissipation current
Dissipation current at no load:MAX.2mA
(Conventional model:MAX.10mA)
OFF-state dissipation current:MAX.5
A
3. Fixed output and variable output are available
4. SC-63 package
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet
Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
( ) : Typical dimensions
0.5
+
0.2
-
0.1
Epoxy resin
(0.5)
(1.7)
(0.9)
(0.5)
(0 to 0.25)
6.6
MAX.
9.7
MAX.
5.5
0.5
2.5
MIN.
5.2
0.5
2.3
0.5
4
-
(1.27)
0 1 5 E Z 5 M
3
1
2
3
4
5
DC input (V
IN
)
ON/OFF control (V
C
)
DC output (V
O
)
NC
GND
1
2
3
4
5
1
2
3
5
Specific IC
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Parameter
Symbol
Conditions
V
IN
V
O
R
eg
L
R
eg
I
T
C
V
O
RR
Unit
MAX.
TYP.
MIN.
-
-
-
-
45
-
-
I
O
=
5mA to 0.5A
I
O
=
5mA to 1A
V
IN
=
V
O
(TYP.)
+
1V to V
O
(TYP.)
+
6V, I
O
=
5mA
T
j
=
0 to 125C, I
O
=
5mA
Refer to Fig.2
0.2
0.1
0.01
60
2
1
-
(Unless otherwise specified, condition shall be V
IN
=
V
O
(TYP.)
+
1V, I
O
=
0.3A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ5MZ
)
)
(Unless otherwise specified, condition shall be V
IN
=
V
O
(TYP.)
+
1V, I
O
=
0.5A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ01Z
)
)
V
V
%
%
%/C
dB
Input voltage range
Output voltage
Load regulation
PQxxxEZ5MZ
PQxxxEZ01Z
Line regulation
Output voltage temperature coefficient
Ripple Rejection
*6
*4
Output on control voltage
Output off control voltage
Output off control current
Output OFF-state consumption current
Output on control current
V
C (ON)
I
C (ON)
V
C (OFF)
I
C (OFF)
I
qs
-
-
-
-
-
-
-
-
-
V
C
=0.4V
I
O
=0A, V
C
=0.4V
2
-
-
200
0.8
2
-
V
A
V
A
A
-
5
Refer to below table
Refer to below table
-
0.5
0.2
V
Dropout voltage
V
I-O
I
O
=
0.3A
*5
I
O
=
0.5A
*5
PQxxxEZ5MZ
PQxxxEZ01Z
Quiescent current
I
q
I
O
=0A
1
mA
-
2
*4 Applied
PQ030EZ5MZ
,
PQ033EZ5MZ
*5 Input voltage when output voltage falls 0.95V
O
by input voltage falling down
*6 In case of opening control terminal , output voltage turns off
2
s
Electrical Characteristics
Model No.
Symbol
Conditions
V
IN
V
IN
V
IN
Unit
MAX.
TYP.
MIN.
V
O
+
5
-
10
2.35
-
10
2.35
-
10
V
V
V
PQ015EZ5MZ/PQ015EZ01Z
PQ018EZ5MZ/PQ018EZ01Z
PQ033EZ5MZ/PQ033EZ01Z
V
IN
V
O
+
5
-
10
V
PQ030EZ5MZ/PQ030EZ01Z
V
IN
V
O
+
5
-
-
-
-
-
-
10
V
PQ025EZ5MZ/PQ025EZ01Z
(Unless otherwise specified, condition shall be I
O
=
0.3A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ5MZ
)
)
(Unless otherwise specified, condition shall be I
O
=
0.5A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ01Z
)
)
s
Input Voltage Range
Model No.
Symbol
Conditions
V
O
V
O
V
O
Unit
MAX.
TYP.
MIN.
3.218
3.3
3.382
1.75
1.8
1.85
1.45
1.5
1.55
V
V
V
V
O
2.438
2.5
2.562
V
V
O
2.925
3
3.075
V
(Unless otherwise specified, condition shall be V
IN
=
V
O
(TYP.)
+
1V, I
O
=
0.3A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ5MZ
)
)
(Unless otherwise specified, condition shall be V
IN
=
V
O
(TYP.)
+
1V, I
O
=
0.5A,V
C
=
2.7V,
Ta=25C
(
PQxxxEZ01Z
)
)
PQ015EZ5MZ/PQ015EZ01Z
PQ018EZ5MZ/PQ018EZ01Z
PQ033EZ5MZ/PQ033EZ01Z
PQ030EZ5MZ/PQ030EZ01Z
PQ025EZ5MZ/PQ025EZ01Z
-
-
-
-
-
s
Output Voltage Range
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Fig.2 Test Circuit for Ripple Rejection
Fig.3 Power Dissipation vs. Ambient
Temperature
I
O
R
L
V
C
V
IN
ei
eo
+
+
f
=
120Hz (sine wave)
ei(rms)
=
0.5V
V
IN
=
V
O
(TYP)
+
2V
I
O
=
0.3A
RR
=
20log (ei(rms)/eo(rms))
2.7V
3
1
2
5
0.33
F
47
F
V
~
~
Fig.1 Standard Test Circuit
R
L
I
C
I
q
I
O
V
O
V
C
+
0.33
F
47
F
V
IN
A
A
3
2
5
1
V
A
Power dissipation P
D
(W)
0
5
10
8
-
40
-
20
0
20
40
60
80
P
D
: With infinite heat sink
Ambient temperature T
a
(
C)
Note) Oblique line prtion:Overheat protection may operate in this area
Fig.4 Overcurrent Protection Characteristics
(PQ015EZ5MZ)
Output voltage V
O
(V)
Output current I
O
(A)
0
0.3
0.6
0.9
1.2
1.5
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.3
0.5
0.7
0.9
1.1
V
IN
=
2.35V
V
IN
=
3V
V
IN
=
3.3V
V
IN
=
2.5V
V
IN
=
5V
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Fig.8 Overcurrent Protection Characteristics
(PQ033EZ5MZ)
Fig.7 Overcurrent Protection Characteristics
(PQ030EZ5MZ)
Fig.9 Overcurrent Protection Characteristics
(PQ015EZ01Z)
Fig.10 Overcurrent Protection Characteristics
(PQ018EZ01Z)
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
3
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.3
0.5
0.7
0.9
1.1
V
IN
=
10V
V
IN
=
7V
V
IN
=
5.5V
V
IN
=
5V
V
IN
=
4.5V
Output voltage V
O
(V)
Output current I
O
(A)
0
0.3
0.6
0.9
1.2
1.5
0
1
2
0.5
1.5
V
IN
=
2.35V
V
IN
=
2.5V
V
IN
=
3.3V
V
IN
=
5V
V
IN
=
3V
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
3
3.5
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.3
0.5
0.7
0.9
1.1
V
IN
=
10V
V
IN
=
4.5V
V
IN
=
7V
V
IN
=
5.5V
V
IN
=
5V
Output voltage V
O
(V)
Output current I
O
(A)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0
0.5
1
1.5
2
V
IN
=
2.35V
V
IN
=
2.5V
V
IN
=
5V
V
IN
=
3V
V
IN
=
3.3V
Output voltage V
O
(V)
Output current I
O
(A)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.3
0.5
0.7
0.9
1.1
V
IN
=
2.35V
V
IN
=
2.5V
V
IN
=
3V
V
IN
=
3.3V
V
IN
=
5V
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
0
0.2
0.4
0.6
0.8
1
1.2
0.1
0.3
0.5
0.7
0.9
1.1
V
IN
=
3V
V
IN
=
3.3V
V
IN
=
3.6V
V
IN
=
5V
V
IN
=
4.5V
Fig.5 Overcurrent Protection Characteristics
(PQ018EZ5MZ)
Fig.6 Overcurrent Protection Characteristics
(PQ025EZ5MZ)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
0
0.5
1
1.5
2
V
IN
=
3V
V
IN
=
3.3V
V
IN
=
3.6V
V
IN
=
5V
V
IN
=
4.5V
Fig.11 Overcurrent Protection Characteristics
(PQ025EZ01Z)
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
3
0
0.5
1
1.5
2
V
IN
=
10V
V
IN
=
7V
V
IN
=
5.5V
V
IN
=
5V
V
IN
=
4.5V
Fig.12 Overcurrent Protection Characteristics
(PQ030EZ01Z)
Output voltage V
O
(V)
Output current I
O
(A)
0
0.5
1
1.5
2
2.5
3
3.5
0
0.5
1
1.5
2
V
IN
=
10V
V
IN
=
7V
V
IN
=
5.5V
V
IN
=
5V
V
IN
=
4.5V
Fig.13 Overcurrent Protection Characteristics
(PQ033EZ01Z)
Output voltage V
O
(V)
1.45
1.46
1.47
1.48
1.49
1.5
1.51
1.52
1.53
1.54
1.55
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
2.5V
V
C
=
2.7V
PQ015EZ01Z
:I
O
=
0.5A
PQ015EZ5MZ
:I
O
=
0.3A
Fig.14 Output Voltage vs. Ambient Temperature
(PQ015EZ5MZ/PQ015EZ01Z)
Output voltage V
O
(V)
1.75
1.76
1.77
1.78
1.79
1.8
1.81
1.82
1.83
1.84
1.85
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
2.8V
V
C
=
2.7V
PQ018EZ01Z
:I
O
=
0.5A
PQ018EZ5MZ
:I
O
=
0.3A
Fig.15 Output Voltage vs. Ambient Temperature
(PQ018EZ5MZ/PQ018EZ01Z)
Output voltage V
O
(V)
2.475
2.48
2.485
2.49
2.495
2.5
2.505
2.51
2.515
2.52
2.525
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
3.5V
V
C
=
2.7V
PQ025EZ01Z
:I
O
=
0.5A
PQ025EZ5MZ
:I
O
=
0.3A
Fig.16 Output Voltage vs. Ambient Temperature
(PQ025EZ5MZ/PQ025EZ01Z)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Output voltage V
O
(V)
2.95
2.96
2.97
2.98
2.99
3
3.01
3.02
3.03
3.04
3.05
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
4V
V
C
=
2.7V
PQ030EZ01Z
:I
O
=
0.5A
PQ030EZ5MZ
:I
O
=
0.3A
Fig.17 Output Voltage vs. Ambient Temperature
(PQ030EZ5MZ/PQ030EZ01Z)
Output voltage V
O
(V)
3.25
3.26
3.27
3.28
3.29
3.3
3.31
3.32
3.33
3.34
3.35
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
4.3V
V
C
=
2.7V
PQ033EZ01Z
:I
O
=
0.5A
PQ033EZ5MZ
:I
O
=
0.3A
Fig.18 Output Voltage vs. Ambient Temperature
(PQ033EZ5MZ/PQ033EZ01Z)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0
1
2
3
4
5
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
5
(I
O
=
0.3A)
R
L
=
(I
O
=
0A)
R
L
=
3
(I
O
=
0.5A)
Fig.19 Output Voltage vs. Input Voltage
(PQ015EZ5MZ)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1
2
3
4
5
R
L
=
6
(I
O
=
0.3A)
R
L
=
(I
O
=
0A)
R
L
=
3.6
(I
O
=
0.5A)
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
Fig.20 Output Voltage vs. Input Voltage
(PQ018EZ5MZ)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
2.5
2
1.5
1
0.5
0
1
2
3
4
5
R
L
=
8.3
(I
O
=
0.3A)
R
L
=
5
(I
O
=
0.5A)
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
(I
O
=
0A)
Fig.21 Output Voltage vs. Input Voltage
(PQ025EZ5MZ)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
3.5
3
2.5
2
1.5
1
0.5
0
1
2
3
4
5
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
10
(I
O
=
0.3A)
R
L
=
6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
Fig.22 Output Voltage vs. Input Voltage
(PQ030EZ5MZ)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
3.5
3
2.5
2
1.5
1
0.5
0
1
2
3
4
5
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
11
(I
O
=
0.3A)
R
L
=
6.6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
Fig.23 Output Voltage vs. Input Voltage
(PQ033EZ5MZ)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1
2
3
4
5
R
L
=
3
(I
O
=
0.5A)
R
L
=
1.5
(I
O
=
1A)
R
L
=
(I
O
=
0A)
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
Fig.24 Output Voltage vs. Input Voltage
(PQ015EZ01Z)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1
2
3
4
5
R
L
=
3.6
(I
O
=
0.5A)
R
L
=
1.8
(I
O
=
1A)
R
L
=
(I
O
=
0A)
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
Fig.25 Output Voltage vs. Input Voltage
(PQ018EZ01Z)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
2.5
2
1.5
1
0.5
0
1
2
3
4
5
R
L
=
5
(I
O
=
0.5A)
R
L
=
2.5
(I
O
=
1A)
R
L
=
0
(I
O
=
0A)
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
Fig.26 Output Voltage vs. Input Voltage
(PQ025EZ01Z)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
3.5
3
2.5
2
1.5
1
0.5
0
1
2
3
4
5
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
6
(I
O
=
0.5A)
R
L
=
3
(I
O
=
1A)
R
L
=
(I
O
=
0A)
Fig.27 Output Voltage vs. Input Voltage
(PQ030EZ01Z)
Output voltage V
O
(V)
Input voltage V
IN
(V)
0
3.5
3
2.5
2
1.5
1
0.5
0
1
2
3
4
5
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
6.6
(I
O
=
0.5A)
R
L
=
3.3
(I
O
=
1A)
R
L
=
(I
O
=
0A)
Fig.28 Output Voltage vs. Input Voltage
(PQ033EZ01Z)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
3
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
R
L
=
5
(I
O
=
0.3A)
Fig.29 Circuit Operating Current vs. Input
Voltage (PQ015EZ5MZ)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
3.6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
R
L
=
6
(I
O
=
0.3A)
Fig.30 Circuit Operating Current vs. Input
Voltage (PQ018EZ5MZ)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
5
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
R
L
=
8.3
(I
O
=
0.3A)
Fig.31 Circuit Operating Current vs. Input
Voltage (PQ025EZ5MZ)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
R
L
=
10
(I
O
=
0.3A)
Fig.32 Circuit Operating Current vs. Input
Voltage (PQ030EZ5MZ)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
6.6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
R
L
=
11
(I
O
=
0.3A)
Fig.33 Circuit Operating Current vs. Input
Voltage (PQ033EZ5MZ)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
10
F
R
L
=
1.5
(I
O
=
1A)
R
L
=
3
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
Fig.34 Circuit Operating Current vs. Input
Voltage (PQ015EZ01Z)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
1.8
(I
O
=
1A)
R
L
=
3.6
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
Fig.35 Circuit Operating Current vs. Input
Voltage (PQ018EZ01Z)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
30
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
2.5
(I
O
=
1A)
R
L
=
5
(I
O
=
0.5A)
R
L
=
(I
O
=
0A)
Fig.36 Circuit Operating Current vs. Input
Voltage (PQ025EZ01Z)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
30
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
(I
O
=
0A)
R
L
=
3
(I
O
=
1A)
R
L
=
6
(I
O
=
0.5A)
Fig.37 Circuit Operating Current vs. Input
Voltage (PQ030EZ01Z)
Circuit operating current I
BIAS
(mA)
Input voltage V
IN
(V)
0
10
20
30
0
5
3
4
2
1
V
C
=
2.7V
T
a
=
Room temp.
C
IN
=
0.33
F
C
O
=
47
F
R
L
=
(I
O
=
0A)
R
L
=
3.3
(I
O
=
1A)
R
L
=
6.6
(I
O
=
0.5A)
Fig.38 Circuit Operating Current vs. Input
Voltage (PQ033EZ01Z)
Quiescent current I
q
(mA)
1.4
1.2
1
0.8
0.6
0.4
0.2
-
50
125
100
75
50
25
0
-
25
Ambient temperature T
a
(
C)
0
I
O
=
0A
V
C
=
2.7V
015
:V
IN
=
2.5V
018
:V
IN
=
2.8V
025
:V
IN
=
3.5V
030
:V
IN
=
4.0V
033
:V
IN
=
4.3V
PQxxxEZ01Z
PQxxxEZ5MZ
Fig.39 Quiescent Current vs. Ambient Temperature
(PQxxxEZ5MZ/PQxxxEZ01Z)
Dropout voltage V
I-O
(V)
0
0.25
0.2
0.15
0.1
0.05
-
50
-
25
0
25
50
75
100
125
Ambient temperature T
a
(
C)
V
IN
=
2.35V
V
C
=
2.7V
PQ030EZ01Z
:I
O
=
0.5A
PQ033EZ01Z:
I
O
=
0.5A
PQ030EZ5MZ
:I
O
=
0.3A
PQ033EZ5MZ
:I
O
=
0.3A
Fig.40 Dropout Voltage vs. Ambient Temperature
(PQxxxEZ5MZ/PQxxxEZ01Z)
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
Ripple rejection RR (dB)
0.1
1
10
100
Input ripple frequency f (kHz)
35
40
45
50
55
60
65
70
75
ei(rms)
=0.
5V
V
C
=
2.7V
I
O
=
0.3A
C
O
=
47
F
Ta
=
Room temp.
015
(V
IN
=
3.5V)
018
(V
IN
=
3.8V)
033
(V
IN
=
5.3V)
030
(V
IN
=
5V)
025
(V
IN
=
4.5V)
PQxxxEZ01Z
PQxxxEZ5MZ
Fig.41 Ripple Rejection vs. Input Ripple Frequency
(PQxxxEZ5MZ/PQxxxEZ01Z)
40
45
50
55
60
65
70
75
80
0
0.25
0.5
0.75
1
Ripple rejection RR (dB)
Output current I
O
(A)
ei(rms)
=0.
5V
f
=
120Hz
V
C
=
2.7V
C
O
=
47
F
Ta
=
Room temp.
015
(V
IN
=
3.5V)
030
(V
IN
=
5V)
025
(V
IN
=
4.5V)
PQxxxEZ01Z
PQxxxEZ5MZ
033
(V
IN
=
5.3V)
018
(V
IN
=
3.8V)
Fig.42 Ripple Rejection vs. Output Current
(PQxxxEZ5MZ/PQxxxEZ01Z)
1
3
5
2
V
O
V
IN
C
IN
C
O
+
Load
ON/OFF signal
High:Output ON
Low or open:Output OFF
Fig.43 Example of Application
Power dissipation P
D
(W)
0
2
1
3
-
20
0
20
40
60
80
Ambient temperature T
a
(
C)
Cu area 740mm
2
Cu area 180mm
2
Cu area 100mm
2
Cu area 70mm
2
Cu area 36mm
2
Fig.44 Power Dissipation vs. Ambient
Temperature (Typical Value)
Material : Glass-cloth epoxy resin
Size : 50
50
1.6mm
Cu thickness : 35
m
PWB
PWB
Cu
PQxxxEZ5MZ Series/PQxxxEZ01Z Series
s
Precautions for Use
1
5
3
2
V
IN
C
IN
C
O
V
O
+
C-MOS or TTL
Load
1. External connection
(1) The connecting wiring of C
O,
C
IN
and each terminal, fin portion must be as short as possible. It may oscillate by type, value and
wiring condition of capacitor. Confirm the output wareform in actual using condition beforehand.
(2) ON/OFF control terminal is compatible with LS-TTL. It enables to be direcrly driven by TTL or C-MOS standard logic
(RCA4000 series).
(3) If voltage is applied under the conditions that device pin is connected divergently or reversely, the deterioration of
characteristics or damage may occur. Never allow improper mounting.
2. Thermal protection design
Maximum power dissipation of devices is obtained by the following equation.
P
D
=
I
O
(V
IN
-
V
O
)
+
V
IN
I
q
When ambient temperature T
a
and power dissipation P
D
(MAX.) during operation are determined, operate element within the safety
operation area specified by the derating curve. Insufficient radiation gives an unfavorable influence to the normal operation and
reliability of the device.
In the external area of the safety operation area shown by the derating curve, the overheat protection circuit may operate to shut-
down output. However please avoid keeping such condition for a long time.
3. ESD (Electrostatic Sensitivity Discharge)
Be careful not to apply electrostatic discharge to the device since this device employs a bipolar IC and may be damaged by electro
static discharge. Followings are some methods against excessive voltage caused by electro static discharge.
(1) Human body must be grounded to discharge the electro charge which is charged in the body or cloth.
(2) Anything that is in contact with the device such as workbench, inserter, or measuring instrument must be grounded.
(3) Use a soldering dip basin with a minimum leak current (isolation resistance 10M
or more) from the AC power supply line.
Also the soldering dip basin must be grounded.
2
115
Application Circuits
NOTICE
qThe circuit application examples in this publication are provided to explain representative applications of
SHARP devices and are not intended to guarantee any circuit design or license any intellectual property
rights. SHARP takes no responsibility for any problems related to any intellectual property right of a
third party resulting from the use of SHARP's devices.
qContact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
SHARP reserves the right to make changes in the specifications, characteristics, data, materials,
structure, and other contents described herein at any time without notice in order to improve design or
reliability. Manufacturing locations are also subject to change without notice.
qObserve the following points when using any devices in this publication. SHARP takes no responsibility
for damage caused by improper use of the devices which does not meet the conditions and absolute
maximum ratings to be used specified in the relevant specification sheet nor meet the following
conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
--- Personal computers
--- Office automation equipment
--- Telecommunication equipment [terminal]
--- Test and measurement equipment
--- Industrial control
--- Audio visual equipment
--- Consumer electronics
(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and
safety when SHARP devices are used for or in connection with equipment that requires higher
reliability such as:
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
--- Traffic signals
--- Gas leakage sensor breakers
--- Alarm equipment
--- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely
high level of reliability and safety such as:
--- Space applications
--- Telecommunication equipment [trunk lines]
--- Nuclear power control equipment
--- Medical and other life support equipment (e.g., scuba).
qContact a SHARP representative in advance when intending to use SHARP devices for any "specific"
applications other than those recommended by SHARP or when it is unclear which category mentioned
above controls the intended use.
qIf the SHARP devices listed in this publication fall within the scope of strategic products described in the
Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export
such SHARP devices.
qThis publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under
the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, in whole or in part, without the express written
permission of SHARP. Express written permission is also required before any use of this publication
may be made by a third party.
qContact and consult with a SHARP representative if there are any questions about the contents of this
publication.