ChipFind - документация

Электронный компонент: BTS621L1

Скачать:  PDF   ZIP
PROFET BTS 621 L1
Semiconductor Group
1
12.96
Smart Two Channel Highside Power Switch
Features
Overload protection
Current limitation
Short circuit protection
Thermal shutdown
Overvoltage protection (including load dump)
Fast demagnetization of inductive loads
Reverse battery protection
1)
Undervoltage and overvoltage shutdown with
auto-restart and hysteresis
Open drain diagnostic output
Open load detection in ON-state
CMOS compatible input
Loss of ground and loss of
V
bb
protection
Electrostatic discharge (ESD) protection
Application
C compatible power switch with diagnostic
feedback for 12 V and 24 V DC grounded loads
All types of resistive, inductive and capacitve loads
Replaces electromechanical relays, fuses and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic
feedback, monolithically integrated in Smart SIPMOS
technology. Fully protected by embedded protection
functions.
+ V bb
IN1
ST
Signal GND
ESD
PROFET
OUT1
GND
Logic
Voltage
sensor
Voltage
source
Open load
detection 1
Short to Vbb
Level shifter
Temperature
sensor 1
Rectifier 1
Limit for
unclamped
ind. loads 1
Gate 1
protection
Current
limit 1
3
5
2
4
1
Load GND
Load
V
Logic
Overvoltage
protection
OUT2
Open load
detection 2
Short to Vbb
Level shifter
Temperature
sensor 2
Rectifier 2
Limit for
unclamped
ind. loads 2
Gate 2
protection
Current
limit 2
7
IN2
6
GND
R
R
O1
O2
Charge
pump 1
Charge
pump 2
1
)
With external current limit (e.g. resistor R
GND
=150
) in GND connection, resistor in series with ST
connection, reverse load current limited by connected load.
Product Summary
Overvoltage protection
V
bb(AZ)
43
V
Operating voltage
V
bb(on)
5.0 ... 34
V
channels:
each
both
parallel
On-state resistance
R
ON
100
50 m
Load current (ISO)
I
L(ISO)
4.4
8.5
A
Current limitation
I
L(SCr)
8
8
A
TO-220AB/7
1
7
Standard
1
7
Straight leads
1
7
SMD
BTS 621 L1
Semiconductor Group
2
Pin
Symbol
Function
1
OUT1 (Load, L)
Output 1, protected high-side power output of channel 1
2
GND
Logic ground
3
IN1
Input 1, activates channel 1 in case of logical high signal
4
Vbb
Positive power supply voltage,
the tab is shorted to this pin
5
ST
Diagnostic feedback: open drain, low on failure
6
IN2
Input 2, activates channel 2 in case of logical high signal
7
OUT2 (Load, L)
Output 2, protected high-side power output of channel 2
Maximum Ratings at T
j
= 25 C unless otherwise specified
Parameter
Symbol
Values
Unit
Supply voltage (overvoltage protection see page 4)
V
bb
43
V
Supply voltage for full short circuit protection
T
j Start
=-40 ...+150C
V
bb
34
V
Load dump protection
2
)
V
LoadDump
=
U
A
+
V
s
,
U
A
= 13.5 V
R
I
3
)
= 2
,
R
L
= 2.7
,
t
d
= 200 ms, IN= low or high
V
Load dump
4
)
60
V
Load current (Short circuit current, see page 4)
I
L
self-limited
A
Operating temperature range
Storage temperature range
T
j
T
stg
-40 ...+150
-55 ...+150
C
Power dissipation (DC), T
C
25 C
P
tot
75
W
Inductive load switch-off energy dissipation, single pulse
V
bb
=
12V,
T
j,start
=
150C,
T
C
=
150C const.
one channel,
I
L
=
4.4
A, Z
L
=
32
mH, 0
:
E
AS
395
mJ
both channels parallel,
I
L
=
8.5
A, Z
L
=
17
mH, 0
:
790
see diagrams on page 9
Electrostatic discharge capability (ESD)
IN:
(Human Body Model)
all other pins:
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993
V
ESD
1.0
2.0
kV
Input voltage (DC)
V
IN
-10 ... +16
V
Current through input pin (DC)
Current through status pin (DC)
see internal circuit diagrams page 7
I
IN
I
ST
2.0
5.0
mA
2
)
Supply voltages higher than V
bb(AZ)
require an external current limit for the GND and status pins, e.g. with a
150
resistor in the GND connection and a 15 k
resistor in series with the status pin. A resistor for the
protection of the input is integrated.
3)
R
I
= internal resistance of the load dump test pulse generator
4)
V
Load dump
is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
BTS 621 L1
Semiconductor Group
3
Thermal Characteristics
Parameter and Conditions
Symbol
Values
Unit
min
typ
max
Thermal resistance
chip - case, both channels:
each channel:
junction - ambient (free air):
R
thJC
R
thJA
--
--
--
--
--
--
1.7
3.4
75
K/W
SMD version, device on PCB
5)
:
35
5
)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm
2
(one layer, 70
m thick) copper area for Vbb
connection. PCB is vertical without blown air.
Electrical Characteristics
Parameter and Conditions,
each channel
Symbol
Values
Unit
at
T
j
= 25 C,
V
bb
= 12 V unless otherwise specified
min
typ
max
Load Switching Capabilities and Characteristics
On-state resistance (pin 4 to 1 or 7)
I
L
= 2 A
T
j
=25 C:
each channel
T
j
=150 C:
R
ON
--
80
160
100
200
m
Nominal load current, ISO Norm (pin 4 to 1 or 7)
V
ON
= 0.5 V,
T
C
= 85 C
each channel:
both channels parallel:
I
L(ISO)
3.5
6.8
4.4
8.5
--
--
A
Output current (pin
1
or 7) while GND disconnected
or GND pulled up,
V
bb
=30 V,
V
IN
= 0, see diagram
page 8
I
L(GNDhigh)
--
--
10
mA
Turn-on time
IN
to 90%
V
OUT
:
Turn-off time
IN
to 10%
V
OUT
:
R
L
= 12
,
T
j
=-40...+150C
t
on
t
off
80
80
200
200
400
400
s
Slew rate on
10 to 30%
V
OUT
,
R
L
= 12
,
T
j
=-40...+150C
d
V /dt
on
0.1
--
1
V/
s
Slew rate off
70 to 40%
V
OUT
,
R
L
= 12
,
T
j
=-40...+150C
-d
V/dt
off
0.1
--
1
V/
s
BTS 621 L1
Parameter and Conditions,
each channel
Symbol
Values
Unit
at
T
j
= 25 C,
V
bb
= 12 V unless otherwise specified
min
typ
max
Semiconductor Group
4
Operating Parameters
Operating voltage
6
)
T
j
=-40...+150C:
V
bb(on)
5.0
--
34
V
Undervoltage shutdown
T
j
=-40...+150C:
V
bb(under)
3.5
--
5.0
V
Undervoltage restart
T
j
=-40...+25C:
T
j
=+150C:
V
bb(u rst)
--
--
5.0
7.0
V
Undervoltage restart of charge pump
see diagram page 13
T
j
=-40...+150C:
V
bb(ucp)
--
5.6
7.0
V
Undervoltage hysteresis
V
bb(under)
=
V
bb(u rst)
-
V
bb(under)
V
bb(under)
--
0.2
--
V
Overvoltage shutdown
T
j
=-40...+150C:
V
bb(over)
34
--
43
V
Overvoltage restart
T
j
=-40...+150C:
V
bb(o rst)
33
--
--
V
Overvoltage hysteresis
T
j
=-40...+150C:
V
bb(over)
--
0.5
--
V
Overvoltage protection
7
)
T
j
=-40...+150C:
I
bb
=40 mA
V
bb(AZ)
42
47
--
V
Standby current (pin 4)
V
IN
=0
T
j
=-40...+25C
:
T
j
= 150C:
I
bb(off)
--
--
14
17
30
35
A
Leakage output current (included in
I
bb(off)
)
V
IN
=0
I
L(off)
--
--
12
A
Operating current (Pin 2)
8)
,
V
IN
=5 V
both channels on, T
j
=-40...+150C
I
GND
--
4
6
mA
Operating current (Pin 2)
8)
one channel on, T
j
=-40...+150C:
I
GND
--
2
3
mA
6)
At supply voltage increase up to
V
bb
= 5.6 V typ without charge pump,
V
OUT
V
bb
- 2 V
7)
See also
V
ON(CL)
in table of protection functions and circuit diagram page 8.
8
)
Add
I
ST
, if
I
ST
> 0, add
I
IN
, if
V
IN
>5.5 V
BTS 621 L1
Parameter and Conditions,
each channel
Symbol
Values
Unit
at
T
j
= 25 C,
V
bb
= 12 V unless otherwise specified
min
typ
max
Semiconductor Group
5
Protection Functions
Initial peak short circuit current limit (pin 4 to 1
or 7)
I
L(SCp)
T
j
=-40C:
T
j
=25C:
T
j
=+150C:
11
9
5
18
14
8
25
22
14
A
Repetitive short circuit shutdown current limit
I
L(SCr)
T
j
=
T
jt
(see timing diagrams, page 11)
--
8
--
A
Output clamp (inductive load switch off)
at
V
OUT
=
V
bb
-
V
ON(CL)
I
L
= 40 mA,
T
j
=-40..+150C:
V
ON(CL)
41
47
53
V
Thermal overload trip temperature
T
jt
150
--
--
C
Thermal hysteresis
T
jt
--
10
--
K
Reverse battery (pin 4 to 2)
9
)
-
V
bb
--
--
32
V
Reverse battery voltage drop
(V
out
> V
bb
)
I
L
= -2.9 A, each channel
T
j
=150 C:
-V
ON(rev)
--
610
--
mV
Diagnostic Characteristics
Open load detection current
T
j
=-40 C
:
(on-condition)
T
j
=25 ..150C:
I
L (OL)
20
20
--
--
400
300
mA
Open load detection voltage
10
) (off-condition)
T
j
=-40..150C:
V
OUT(OL)
2
3
4
V
Internal output pull down
(pin 1
or
7 to 2),
V
OUT
=5 V,
T
j
=-40..150C
R
O
4
10
30
k
9
)
Requires 150
resistor in GND connection. The reverse load current through the intrinsic drain-source
diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal
operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature
protection is not active during reverse current operation! Input and Status currents have to be limited (see
max. ratings page 2 and circuit page 8).
10)
External pull up resistor required for open load detection in off state.
BTS 621 L1
Parameter and Conditions,
each channel
Symbol
Values
Unit
at
T
j
= 25 C,
V
bb
= 12 V unless otherwise specified
min
typ
max
Semiconductor Group
6
Input and Status Feedback
11
)
Input resistance
T
j
=-40..150C, see circuit page 7
R
I
2.5
3.5
6
k
Input turn-on threshold voltage
T
j
=-40..+150C:
V
IN(T+)
1.7
--
3.5
V
Input turn-off threshold voltage
T
j
=-40..+150C:
V
IN(T-)
1.5
--
--
V
Input threshold hysteresis
V
IN(T)
--
0.5
--
V
Off state input current (pin 3 or 6),
V
IN
= 0.4 V,
T
j
=-40..+150C
I
IN(off)
1
--
50
A
On state input current (pin 3 or 6),
V
IN
= 3.5 V,
T
j
=-40..+150C
I
IN(on)
20
50
90
A
Delay time for status with open load after switch
off (other channel in off state)
(see timing diagrams, page 12
),
T
j
=-40..+150C
t
d(ST OL4)
100
320
800
s
Delay time for status with open load after switch
off (other channel in on state)
(see timing diagrams, page 12
),
T
j
=-40..+150C
t
d(ST OL5)
--
5
20
s
Status invalid after positive input slope
(open load)
Tj=-40 ... +150C:
t
d(ST)
--
200
600
s
Status output (open drain)
Zener limit voltage
T
j
=-40...+150C,
I
ST
= +1.6 mA:
ST low voltage
T
j
=-40...+25C,
I
ST
= +1.6 mA:
T
j
= +150C,
I
ST
= +1.6 mA:
V
ST(high)
V
ST(low)
5.4
--
--
6.1
--
--
--
0.4
0.6
V
11)
If a ground resistor R
GND
is used, add the voltage drop across this resistor.
BTS 621 L1
Semiconductor Group
7
Truth Table
IN1
IN2
OUT1
OUT2
ST
BTS621L1
Normal operation
L
L
H
H
L
H
L
H
L
L
H
H
L
H
L
H
H
H
H
H
Open load
Channel 1
L
L
H
L
H
X
Z
Z
H
L
H
X
H(L
12
))
H
L
Channel 2
L
H
X
L
L
H
L
H
X
Z
Z
H
H(L
12
))
H
L
Short circuit to Vbb
Channel 1
L
L
H
L
H
X
H
H
H
L
H
X
L
13)
H
H(L
14
))
Channel 2
L
H
X
L
L
H
L
H
X
H
H
H
L
13)
H
H(L
14
))
Overtemperature
both channel
L
X
H
L
H
X
L
L
L
L
L
L
H
L
L
Channel 1
L
H
X
X
L
L
X
X
H
L
Channel 2
X
X
L
H
X
X
L
L
H
L
Undervoltage/ Overvoltage
X
X
L
L
H
L = "Low" Level
X = don't care
Z = high impedance, potential depends on external circuit
H = "High" Level
Status signal after the time delay shown in the diagrams (see fig 5. page 12...13)
12
) With additional external pull up resistor
13)
An external short of output to
V
bb
, in the off state, causes an internal current from output to ground. If R
GND
is used, an offset voltage at the GND and ST pins will occur and the V
ST low
signal may be errorious.
14
) Low resistance to
V
bb
may be detected in the ON-state by the no-load-detection
Terms
PROFET
V
IN2
ST
OUT2
GND
bb
VST
V
IN1
I ST
I IN1
V
bb
Ibb
I L2
VOUT2
I
GND
V
ON2
1
2
4
3
5
IN1
V
IN2
I IN2
V
OUT1
V
ON1
I L1
OUT1
6
7
R
GND
Input circuit (ESD protection)
IN
GND
I
R
ESD-ZD
I
I
I
ESD zener diodes are not to be used as voltage clamp
at DC conditions. Operation in this mode may result in
a drift of the zener voltage (increase of up to 1 V).
BTS 621 L1
Semiconductor Group
8
Status output
ST
GND
ESD-
ZD
+5V
R
ST(ON)
ESD-Zener diode: 6.1 V typ., max 5 mA;
R
ST(ON)
< 380
at 1.6 mA, ESD zener diodes are not
to be used as voltage clamp at DC conditions.
Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
Inductive and overvoltage output clamp
+ Vbb
OUT
GND
PROFET
V
Z
V
ON
V
ON
clamped to 47 V typ.
Overvolt. and reverse batt. protection
+ Vbb
IN2
ST
ST
R
GND
GND
R
Signal GND
Logic
V
Z2
IN1
RI
V
Z1
V
Z1
= 6.1 V typ.,
V
Z2
= 47 V typ.,
R
I
= 3.5 k
typ
,
R
GND
= 150
Open-load detection
ON-state diagnostic condition:
V
ON
<
R
ON
*
I
L(OL)
; IN
high
Open load
detection
Logic
unit
+ Vbb
OUT
ON
V
ON
OFF-state diagnostic condition:
V
OUT
> 3 V typ.; IN low
Open load
detection
Logic
unit
V
OUT
Signal GND
R
EXT
R
O
OFF
GND disconnect
PROFET
V
IN2
ST
OUT2
GND
bb
V
bb
Ibb
1
2
4
3
5
IN1
OUT1
6
7
V
IN1
V
IN2
V
ST
V
GND
Any kind of load. In case of Input=high is
V
OUT
V
IN
-
V
IN(T+)
.
Due to V
GND
>0, no V
ST
= low signal available.
BTS 621 L1
Semiconductor Group
9
GND disconnect with GND pull up
PROFET
V
IN2
ST
OUT2
GND
bb
V
bb
1
2
4
3
5
IN1
OUT1
6
7
V
IN1
V
IN2
V
ST
V
GND
Any kind of load. If V
GND >
V
IN
- V
IN(T+)
device stays off
Due to V
GND
>0, no V
ST
= low signal available.
V
bb
disconnect with energized inductive
load
PROFET
V
IN2
ST
OUT2
GND
bb
V
bb
1
2
4
3
5
IN1
OUT1
6
7
high
Normal load current can be handled by the PROFET
itself.
V
bb
disconnect with charged external
inductive load
PROFET
V
IN2
ST
OUT2
GND
bb
1
2
4
3
5
IN1
OUT1
6
7
V
bb
high
D
If other external inductive loads L are connected to the PROFET,
additional elements like D are necessary.
Inductive Load switch-off energy
dissipation
PROFET
V
I N
S T
O U T
G N D
b b
=
E
E
E
E AS
b b
L
R
ELoad
L
RL
{
Z
L
Energy stored in load inductance:
E
L
=
1/2
L
I
2
L
While demagnetizing load inductance, the energy
dissipated in PROFET is
E
AS
= E
bb
+ E
L
- E
R
=
V
ON(CL)
i
L
(t) dt,
with an approximate solution for R
L
>
0
:
E
AS
=
I
L
L
2
R
L
(
V
bb
+
|V
OUT(CL)
|)
ln
(1+
I
L
R
L
|V
OUT(CL)
|
)
Maximum allowable load inductance for
a single switch off
(both channels parallel)
L = f (I
L
);
T
j,start
=
150C,
T
C
=
150C const.,
V
bb
=
12
V,
R
L
=
0
L
[mH]
1
10
100
1000
10000
3
5
7
9
11
I
L [A]
BTS 621 L1
Semiconductor Group
10
Typ. transient thermal impedance chip case
Z
thJC
=
f
(t
p
), one Channel active
Z
thJC
[K/W]
0.01
0.1
1
10
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
0
0.01
0.02
0.05
0.1
0.2
0.5
D=
t
p [s]
Typ. transient thermal impedance chip case
Z
thJC
=
f
(t
p
), both Channel active
Z
thJC
[K/W]
0.01
0.1
1
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
0
0.01
0.02
0.05
0.1
0.2
0.5
D=
t
p [s]
BTS 621 L1
Semiconductor Group
11
Timing diagrams
Both channels are symmetric and consequently the diagrams
are valid for each channel as well as for permuted channels
Figure 1a: V
bb
turn on:
IN2
V
OUT1
t
V
bb
ST open drain
IN1
V
OUT2
Figure 2a: Switching a lamp:
IN
ST
OUT
L
t
V
I
Figure 2b: Switching an inductive load
IN
ST
L
t
V
I
*)
OUT
t
d(ST)
I
L(OL)
*) if the time constant of load is too large, open-load-status may
occur
Figure 3a: Short circuit
shut down by overtempertature, reset by cooling
IN
ST
L
t
I
other channel: normal operation
L(SCr)
I
I
L(SCp)
Heating up may require several milliseconds, depending on
external conditions
BTS 621 L1
Semiconductor Group
12
Figure 4a: Overtemperature:
Reset if
T
j
<
T
jt
IN
ST
OUT
J
t
V
T
Figure 5a: Open load: detection in ON-state, open
load occurs in on-state
IN2 channel 2: normal operation
OUT1
t
V
ST
IN1
I
L1
t
d(ST OL1)
t
d(ST OL2)
t
d(ST OL1)
t
d(ST OL2)
open
load
open
load
normal
load
channel 1:
t
d(ST OL1)
= 30
s typ., t
d(ST OL2)
= 20
s typ
Figure 5b: Open load: detection in ON-state, turn
on/off to open load
OUT1
t
V
ST
IN1
I
L1
t
d(ST)
t
d(ST OL4)
t
d(ST)
t
d(ST OL5)
IN2 channel 2: normal operation
channel 1: open load
Figure 5c: Open load: detection in ON- and OFF-state
(with R
EXT
), turn on/off to open load
t
V
ST
IN1
I
L1
t
d(ST)
d(ST OL5)
channel 1: open load
t
d(ST)
t
OUT1
IN2 channel 2: normal operation
t
d(ST OL5)
depends on external circuitry because of high
impedance
BTS 621 L1
Semiconductor Group
13
Figure 6a: Undervoltage:
IN
V
OUT
t
V
bb
ST open drain
V
V
bb(under)
bb(u rst)
bb(u cp)
V
Figure 6b: Undervoltage restart of charge pump
bb(under)
V
V
bb(u rst)
V
bb(over)
V
bb(o rst)
V
bb(u cp)
off-state
on-state
V
ON(CL)
V
bb
V
on
off-state
charge pump starts at V
bb(ucp)
=5.6 V typ.
Figure 7a: Overvoltage:
IN
V
OUT
t
V
bb
ST
ON(CL)
V
V
bb(over)
V
bb(o rst)
BTS 621 L1
Semiconductor Group
14
Package and Ordering Code
All dimensions in mm
Standard TO-220AB/7
Ordering code
BTS621L1
Q67060-S6304-A2
TO 220AB/7, Opt. E3230
Ordering code
BTS621L1 E3230
Q67060-S6304-A3
SMD TO 220AB/7, Opt. E3128
Ordering code
BTS621L1 E3128A
T&R:
Q67060-S6304-A4
Changed since 04.96
Date
Change
Dec
1996
t
d(ST OL4)
max reduced from 1500
to 800s, typical from 400 to
320s, min limit unchanged
E
AS
maximum rating and diagram
added
Zth specification added
max Output leakage current IL(off)
reduced from 20 to 12 A
increased ESD capability
Typ. reverse battery voltage drop -
V
ON(rev)
added
Components used in life-support devices or systems must be
expressly authorised for such purpose!
Critical components15
)
of the Semiconductor Group of Siemens AG, may only be used in
life supporting devices or systems16
)
with the express written
approval of the Semiconductor Group of Siemens AG.
15) A critical component is a component used in a life-support
device or system whose failure can reasonably be expected to
cause the failure of that life-support device or system, or to
affect its safety or effectiveness of that device or system.
16) Life support devices or systems are intended (a) to be
implanted in the human body or (b) support and/or maintain
and sustain and/or protect human life. If they fail, it is
reasonably to assume that the health of the user or other
persons may be endangered.