ChipFind - документация

Электронный компонент: CXD2310

Скачать:  PDF   ZIP
Structure
Silicon gate CMOS IC
1
CXD2310AR
E95429B5X-PK
10-bit 20MSPS Video A/D Converter
Description
The CXD2310AR is a 10-bit CMOS A/D converter
for video applications. This IC is ideally suited for the
A/D conversion of video signals in TVs, VCRs,
camcorders, etc.
Features
Resolution: 10-bit 1.0 LSB (D.L.E.)
Maximum sampling frequency: 20MSPS
Low power consumption: 150mW (at 20MSPS typ.)
(Not including reference current)
TTL compatible input
Tri-state TTL compatible output (DV
DD
= 3.3V)
Low input capacitance
Reference impedance: 280
(typ.)
Absolute Maximum Ratings (Ta = 25C)
Supply voltage
V
DD
7
V
Reference voltage
VRT, VRB
V
DD
+ 0.5 to V
SS
0.5
V
Input voltage (analog)
V
IN
V
DD
+ 0.5 to V
SS
0.5
V
Input voltage (digital)
V
IH
, V
IL
V
DD
+ 0.5 to V
SS
0.5
V
Output voltage (digital)
V
OH
, V
OL
V
DD
+ 0.5 to V
SS
0.5
V
Storage temperature
Tstg
55 to +150
C
Recommended Operating Conditions
Supply voltage
AV
DD
, AV
SS
5.0 0.25
V
DV
DD
, DV
SS
3.0 to 5.25
V
| DV
SS
AV
SS
|
0 to 100
mV
Reference input voltage
VRB
More than 1.8
V
VRT
to AV
DD
0.4
V
Analog input
V
IN
More than 1.8Vp-p
Clock pulse width
T
PW
1
25 (min.)
ns
T
PW
0
25 (min.)
ns
Operating ambient temperature
Topr
20 to +75
C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
48 pin LQFP (Plastic)
2
CXD2310AR
Block Diagram
OE
+
+
8
DAC
Coarse
Comparate
&
Encode
Calibration
Unit
Fine
Comparate
&
Encode
Fine
Latch
Coarse
Correction
&
Latch
Timing Gen
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0 (LSB)
MINV
LINV
TESTMODE
CAL
SEL
RESET
V
IN
VRT
VRT
VRB
VRB
CLK
CE
2
3
4
5
8
9
10
11
12
15
17
18
19
20
21
22
23
24
26
27 28
29
30
39
36
35
34
41
1
Sense
Amp
Sense
Amp
AV
SS
AV
DD
Auto Calibration
Pulse Generator
S/H
Amp
Pin Configuration
CE
OE
CLK
MINV
LINV
TESTMODE
AV
DD
SEL
DV
SS
RESET
TIN
TO
TSTR
AT
V
IN
NC
CAL
TS
AV
SS
AV
SS
DV
DD
NC
NC
DV
SS
AV
SS
VRB
VRB
NC
NC
NC
VRT
VRT
AV
SS
AV
SS
AV
DD
AV
DD
D1
D2
D3
D4
DV
SS
DV
DD
D5
D6
D7
D8
D9
D0
2
3
4
5
6
7
8
9 10 11 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
39
38
37
36 35 34
31
32
33
41
42
43
44
45
46
47
48
1
3
CXD2310AR
DV
DD
DV
SS
Pin No
Symbol
Equivalent circuit
Description
1 to 5
8 to 12
D0 to D9
13
7, 45
6, 16, 48
27, 28, 36,
43, 44
TO
DV
DD
DV
SS
AV
SS
17
SEL
22
CLK
CAL
41
15
RESET
D0 (LSB) to D9 (MSB)
output.
Test pin.
TS = High:
High impedance state
Digital V
DD
.
Digital V
SS
.
Analog V
SS
.
Calibration input pulse
select after completion of
the startup calibration.
High : Internal pulse
generation
Low : External input
Clock pin.
Calibration pulse input.
Calibration circuit reset
and startup calibration
restart.
AV
DD
AV
SS
17
AV
DD
AV
SS
22
AV
DD
AV
SS
41
AV
DD
AV
SS
15
Pin Description
4
CXD2310AR
AV
DD
AV
SS
29
30
34
35
Pin No.
Symbol
Equivalent circuit
Description
14
TIN
34, 35
VRB
23
OE
CE
24
Test signal input.
Normally fixed to AV
DD
or
AV
SS
.
Reference top.
Reference bottom.
Test signal output.
TS = High:
High impedance state
D0 to D9 output enable.
Low : Output state
High : High impedance
state
Chip enable.
Low : Active state
High : Standby state
29, 30
VRT
38
AT
42
TS
37
TSTR
Test signal input.
Normally fixed to AV
DD
.
Test signal input.
Normally fixed to AV
SS
.
AV
DD
AV
SS
23
AV
DD
AV
SS
24
5
CXD2310AR
Pin No.
Symbol
Equivalent circuit
Description
20
LINV
39
V
IN
Test mode.
High : Output state
Low : Output fixed
Output inversion.
High : D0 to D8 are
inverted and
output.
Output inversion.
High : D9 is inverted and
output.
Analog input.
19
TESTMODE
21
MINV
18, 25, 26
AV
DD
AV
DD
AV
SS
39
Analog V
DD
.
AV
DD
AV
SS
19
AV
DD
AV
SS
20
AV
DD
AV
SS
21
6
CXD2310AR
Input signal voltage
Digital output code
MSB LSB
Step
VRT
VRB
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0
511
512
1023
TESTMODE
LINV
MINV
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
1
1
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
P
N
N
0
0
1
1
Digital Output
The following table shows the correlation between the analog input voltage and the digital output code
(TESTMODE = 1, LINV, MINV = 0)
The following table shows the output state for the combination of TESTMODE, LINV, and MINV states.
P: Forward-phase output N: Inverted output
Timing Chart 1
t
DL
N
N + 1
N + 2
N + 3
N + 4
t
PW
1
t
PW
0
: Indicates point at which analog data is sampled
Clock
Analog input
Data output
N 3
N 2
N
N 1
1.65V
t
SD
1.65V (DV
DD
= 3.3V)
2.5V (DV
DD
= 5.0V)
Timing Chart 2
High Impedance
t
PEZ
t
PZE
Active
Active
1.65V
1.65V
Output enable (OE)
Data output
1.65V (DV
DD
= 3.3V)
2.5V (DV
DD
= 5.0V)
7
CXD2310AR
Electrical Characteristics
(Fc = 20MSPS, AV
DD
= 5V, DV
DD
= 3.3V, VRB = 2.0V, VRT = 4.0V, Ta = 25C)
Fc max
Fc min
IA
DD
ID
DD
IA
ST
ID
ST
I
RT
I
RB
BW
C
IN
R
REF
E
OT
E
OB
V
CAL
1
V
CAL
2
V
IH
V
IL
A
IH
A
IL
I
IH
I
IL
I
OH
I
OL
I
OZH
I
OZL
t
PEZ
t
PZE
E
L
E
D
DG
DP
t
DL
t
SD
Max. conversion rate
Min. conversion rate
Analog
Digital
Analog
Digital
Analog input band
Analog input capacitance
Reference resistance value
(VRT VRB)
Tri-state output disable time
Tri-state output enable time
Integral non-linearity error
Differential non-linearity error
Differential gain error
Differential phase error
Output data delay
Sampling delay
20
20
5.0
11.0
180
40
120
2.3
50
3.5
3.5
20
10
8
2
27
3.0
7.0
7.0
70
9
280
90
70
2.5
1.0
40
40
25
15
1.3
0.5
1.0
0.3
13
4
0.5
34
5
1.0
1.0
11.0
5.0
380
140
20
0.8
50
5
5
1
1
30
20
2.0
1.0
18
6
Item
Symbol
Conditions
Min.
Typ.
Max.
Unit
Supply
current
MSPS
mA
A
mA
MHz
pF
mV
V
V
A
A
A
ns
ns
%
deg
ns
ns
LSB
mA
Standby
current
Reference pin current
Offset voltage
Analog input current
Startup calibration start
voltage
Digital input voltage
Digital input current
Digital output current
Digital output current
F
IN
= 1.0kHz
triangular wave input
F
IN
= 1.0kHz
triangular wave input
CE = High
E
OT
= theoretical value-actual
measured value
EOB = actual measured value-
theoretical value
1dB
V
OH
= DV
DD
0.5V
V
OL
= 0.4V
V
OH
= DV
DD
V
OL
= 0V
DV
DD
= max
OE = AV
SS
DV
DD
= min
Clock not synchronized for
active
high impedance
Clock not synchronized for high
impedance
active
NTSC 40 IRE mod
ramp, Fc = 14.3MSPS
AV
DD
= 4.75V to 5.25V
C
L
= 20pF
V
IL
= 0V
V
IH
= DV
DD
V
IN
= 4V
V
IN
= 2V
OE = AV
DD
DV
DD
= max
AV
DD
AV
SS
VRT VRB
8
CXD2310AR
Application Circuit 1. Startup calibration + internal auto calibration
Digital output
2.0V
AV
SS
4.0V
2.0V
AV
DD
AV
SS
DV
DD
DV
SS
4.0V
AV
DD
AV
SS
AV
DD
AV
SS
DV
SS
Clock input
CE
OE
CLK
MINV
LINV
TESTMODE
AV
DD
SEL
DV
SS
RESET
TIN
TO
TSTR
AT
V
IN
NC
CAL
TS
AV
SS
AV
SS
DV
DD
NC
NC
DV
SS
AV
SS
VRB
VRB
NC
NC
NC
VRT
VRT
AV
SS
AV
SS
AV
DD
AV
DD
D1
D2
D3
D4
DV
SS
DV
DD
D5
D6
D7
D8
D9
D0
is all 0.1F
1
2
3
4
5
6
7
8
9 10 11 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
AV
DD
SNR
SFDR
SNR
SFDR
53
52
53
54
47
45
60
59
60
65
50
49
Item
Symbol
Conditions
Min.
Typ.
Max.
Unit
dB
dB
F
IN
= 100kHz
F
IN
= 500kHz
F
IN
= 1MHz
F
IN
= 3MHz
F
IN
= 7MHz
F
IN
= 10MHz
F
IN
= 100kHz
F
IN
= 500kHz
F
IN
= 1MHz
F
IN
= 3MHz
F
IN
= 7MHz
F
IN
= 10MHz
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
9
CXD2310AR
Application Circuit 2. Startup calibration + external sync calibration
Digital output
2.0V
AV
SS
Calibration pulse
4.0V
2.0V
AV
DD
AV
SS
DV
DD
DV
SS
4.0V
AV
DD
AV
SS
AV
DD
AV
SS
DV
SS
Clock input
CE
OE
CLK
MINV
LINV
TESTMODE
AV
DD
SEL
DV
SS
RESET
TIN
TO
TSTR
AT
V
IN
NC
CAL
TS
AV
SS
AV
SS
DV
DD
NC
NC
DV
SS
AV
SS
VRB
VRB
NC
NC
NC
VRT
VRT
AV
SS
AV
SS
AV
DD
AV
DD
D1
D2
D3
D4
DV
SS
DV
DD
D5
D6
D7
D8
D9
D0
is all 0.1F
1
2
3
4
5
6
7
8
9 10 11 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
AV
DD
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
10
CXD2310AR
Application Circuit 3. Only startup calibration
(Less than supply voltage fluctuation range of AV
DD
= 100mV and reference voltage fluctuation range of
|VRT VRB| = 200mV)
Digital output
2.0V
AV
SS
4.0V
2.0V
AV
DD
AV
SS
DV
DD
DV
SS
4.0V
AV
DD
AV
SS
AV
DD
AV
SS
DV
SS
Clock input
CE
OE
CLK
MINV
LINV
TESTMODE
AV
DD
SEL
DV
SS
RESET
TIN
TO
TSTR
AT
V
IN
NC
CAL
TS
AV
SS
AV
SS
DV
DD
NC
NC
DV
SS
AV
SS
VRB
VRB
NC
NC
NC
VRT
VRT
AV
SS
AV
SS
AV
DD
AV
DD
D1
D2
D3
D4
DV
SS
DV
DD
D5
D6
D7
D8
D9
D0
is all 0.1F
1
2
3
4
5
6
7
8
9 10 11 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
AV
DD
Fig. 1. Calibration Pulse Generation Circuit
(1) Startup Calibration Function
Over 600 calibration pulses are needed to complete the initial calibration process when the power is first
supplied to the IC. The startup calibration function automatically generates these pulses internally and
completes the initial calibration process.
The following five conditions must be satisfied to initiate the
startup calibration function.
a) The voltage between AV
DD
and AV
SS
is approximately
2.5V or more.
b) The voltage between VRT and VRB is approximately 1V
or more.
c) The RESET pin (Pin 15) must is high.
d) The CE pin (Pin 24) must is low.
e) Condition b is met after condition a.
Once all five of these conditions have been met, the calibration
pulses are generated. The pulses are generated by counting 16
main clock cycles on a 14-bit counter and closing the gate when
the carry-out occurs. Therefore, the time required for startup
calibration after the above five conditions have been met is
determined by the following formula:
Startup calibration time = main clock cycle
16
16,384
For example, if the main clock frequency is 14.3MHz, the time required for startup calibration is 18ms.
When RESET = High and CE = Low
AV
DD
VRT
VRB
1V
[V]
5
2.5
0
[ t ]
Sence Amp 1
Sence Amp 2
CLR
11
CXD2310AR
1. Calibration Function
In order to achieve superior linearity, the CXD2310AR has a built-in calibration circuit. In order to eliminate the
necessity for the externally input calibration pulse required by the earlier CXD2310R, a startup calibration
function and an auto calibration pulse generation function have been newly added to the CXD2310AR. Fig. 1
shows a block diagram of the calibration pulse generation circuit.
AV
DD
OUT
14 bit
Counter
24 bit
Counter
CLR
CLR
CO
CO
CLR
SEL
CAL
D Q
16
1
CLK
AV
DD
AV
SS
VRT
VRB
RESET
CE
Sence
Amp 1
Sence
Amp 2
12
CXD2310AR
(2) Auto Calibration Pulse Generation Function
After startup calibration is completed, this function periodically generates calibration pulses so that calibration
can be performed constantly without any need for input of calibration pulses from an external source. This
function counts 16 main clock cycles on a 24-bit counter and uses the carry-out as the calibration pulse. The
cycle of the calibration pulse generated in this fashion is as follows:
Internal calibration pulse generation cycle = main clock cycle
16
16,777,216
Therefore, if the main clock frequency is 14.3MHz, the calibration pulse cycle is approximately 19 seconds;
since calibration is performed once every seven pulses, the calibration cycle is approximately 130 seconds. In
order to use this function, the SEL pin (Pin 17) must be high.
Note that this function cannot be used if fixing the lower bits in the calibration operation as described below will
cause problems because this function is executed asynchronously without regard to the input signals.
(3) External Calibration Pulse Input Function
If the auto calibration function cannot be used, calibration can be performed in synchronization with the input
signals when a calibration pulse is input from the CAL pin (Pin 41) by setting the SEL pin (Pin 17) low.
7clock
1clock or more
CLK
CAL
D5 to D9
D0 to D4
10ns or more
N 3
N 2
N 1
N
N + 1 N + 2
N + 3
N + 4
N + 5
N 3
N 2
N 1
N
N + 5
Fig. 2. Calibration Timing Chart
Calibration starts when the falling edge of the pulse input to the CAL pin (Pin 41) is detected. Because the
lower comparator is occupied for four clock cycles at this point, the previous lower data is held for four clock
cycles after seven clock cycles since the rising edge of the clock cycle in which the falling edge of CAL was
detected. Calibration can be performed outside of video intervals by using the sync signal, etc., to input the
CAL signal. An example of this is shown below.
(1) Inputting CAL every H-sync
Input
CLK
CAL
13
CXD2310AR
(2) Inputting CAL every V-sync
Input
CLK
RESET
CAL
It is also possible to use only the startup calibration function by leaving the SEL pin (Pin 1/) low and fixing the
CAL pin (Pin 41) either high or low. Note that this method requires restriction of the fluctuation range of the
supply voltage and the reference voltage.
(4) Re-initiating the Startup Calibration Function
The startup calibration function can be re-initiated after the power and reference voltage are supplied by using
the CE pin (Pin 24) and the RESET pin (Pin 15). Particularly in cases where the riseup characteristics of the
power supply and the reference voltage are unstable or the order of the riseup is not kept, it is possible to
initiate startup calibration properly by connecting a CR and delaying startup until after power supply riseup.
RESET
AV
DD
AV
SS
15
R
C
[V]
[ t ]
RESET
AV
DD
VRT
VRB
Fig. 3. Initiation of the Startup Calibration Function Using the RESET pin
14
CXD2310AR
2. Power supply
To prevent the influence of noise, connect the power supply to a 0.1F by-pass capacitor as near the device
as possible.
3. DV
DD
Either a 3.3V or 5.0V digital power supply can be used. Compared to the 5.0V power supply, the 3.3V power
supply generates a decreased amount of radiation noise but offers a decreased drive capacity. These two
power supplies do not virtually differ in static and dynamic characteristics. Further, the High output level rises
up to DV
DD
.
4. Reference input
The voltage to be supplied to the reference pins must be driven by a buffer having a 10mA or more drive
capacity. For supplied voltage stabilization, connect the buffer to a 0.1F by-pass capacitor as near the pins as
possible.
5. Latch-up
Ensure that the AV
DD
and DV
DD
pins share the same power supply on a board to prevent latch-up which may
be caused by power ON time-lag.
6. Board
To obtain full-expected performance from this IC, be sure that the mounting board has a large ground pattern
for lower impedance. It is recommended that the IC be mounted on a board without using a socket to evaluate
its characteristics adequately.
15
CXD2310AR
29
28
27
20
0
25
50
75
Supply current vs. Ambient temperature
Fc = 20MHz
fin = 1kHz ramp wave
AV
DD
= 5.0V
DV
DD
= 3.3V
17
15
13
20
0
25
50
75
Output data delay vs Ambient temperature
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 1MHz
CL = 20pF
60
50
40
100k
1M
10M
Input frequency vs. SNR
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 20MHz
V
IN
= 2Vp-p
Ta = 25C
9
8
7
100k
1M
10M
Input frequency vs. Effective bits
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 20MHz
V
IN
= 2Vp-p
Ta = 25C
60
50
40
100k
1M
10M
Input frequency vs. SFDR
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 20MHz
V
IN
= 2Vp-p
Ta = 25C
6
4
2
20
0
25
50
75
Sampling delay vs. Ambient temperature
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 1MHz
30
25
20
20
0
25
50
75
Maximum operating frequency vs.
Ambient temperature
fin = 1kHz ramp wave
AV
DD
= 5.0V
DV
DD
= 3.3V
35
1
1
3
100k
1M
10M
Input band
AV
DD
= 5.0V
DV
DD
= 3.3V
Fc = 20MHz
V
IN
= 2Vp-p
Ta = 25C
0
2
Ambient temperature [C]
Ambient temperature [C]
Supply current [mA]
Maximum operating frequency [MHz]
Ambient temperature [C]
Ambient temperature [C]
Output data delay [ns]
Sampling delay [ns]
Input frequency [Hz]
Input frequency [Hz]
SNR [dB]
SFDR [dB]
Input frequency [Hz]
Input frequency [Hz]
Effective bits [bit]
Output level [dB]
Example of Representative Characteristics
16
CXD2310AR
SONY CODE
EIAJ CODE
JEDEC CODE
PACKAGE MATERIAL
LEAD TREATMENT
LEAD MATERIAL
PACKAGE MASS
EPOXY RESIN
PLATING
42/COPPER ALLOY
PACKAGE STRUCTURE
48PIN LQFP (PLASTIC)
9.0 0.2
7.0 0.1
1
12
13
24
25
36
37
48
(0.22)
0.18 0.03
+ 0.08
0.5 0.08
(8.0)
0.5
0.2
0.127 0.02
+ 0.05
0.1 0.1
0.5
0.2
A
1.5 0.1
+ 0.2
0 to 10
DETAIL A
0.2g
LQFP-48P-L01
LQFP048-P-0707
0.1
SOLDER/PALLADIUM
NOTE: Dimension "
" does not include mold protrusion.
Package Outline
Unit : mm