ChipFind - документация

Электронный компонент: LF353

Скачать:  PDF   ZIP
WIDE BANDWIDTH
DUAL J-FET OPERATIONAL AMPLIFIERS
.
LOW POWER CONSUMPTION
.
WIDE COMMON-MODE (UP TO V
CC
+
) AND
DIFFERENTIAL VOLTAGE RANGE
.
LOW INPUT BIAS AND OFFSET CURRENT
.
OUTPUT SHORT-CIRCUIT PROTECTION
.
HIGH INPUT IMPEDANCE JFET INPUT
STAGE
.
INTERNAL FREQUENCY COMPENSATION
.
LATCH UP FREE OPERATION
.
HIGH SLEW RATE : 16V/
s (typ)
N
DIP8
(Plastic Package)
1
2
3
4
5
6
7
8
-
+
-
+
1 - Output 1
2 - Inverting input 1
3 - Non-inverting input 1
4 - V
CC
-
5 - Non-inverting input 2
6 - Inverting input 2
7 -Output 2
8 - V
CC
+
PIN CONNECTIONS (top view)
DESCRIPTION
The LF353 are high speed JFET input dual opera-
tional amplifiers incorporating well matched, high
voltageJFET andbipolar transistorsin a monolithicin-
tegrated circuit.
The devicesfeaturehigh slew rates, low input bias and
offset currents, and low offset voltage temperature
coefficient.
LF153
LF253 - LF353
June 1998
D
SO8
(Plastic Micropackage)
ORDER CODES
Part Number
Temperature
Package
N
D
LF353
0
o
C, +70
o
C
LF253
40
o
C, +105
o
C
LF153
55
o
C, +125
o
C
1/9
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
V
CC
Supply Voltage - (note 1)
18
V
V
i
Input Voltage - (note 3)
15
V
V
id
Differential Input Voltage - (note 2)
30
V
P
tot
Power Dissipation
680
mW
Output Short-circuit Duration - (note 4)
Infinite
T
oper
Operating Free Air Temperature Range
LF353
LF253
LF153
0 to 70
40 to 105
55 to 125
o
C
T
stg
Storage Temperature Range
65 to 150
o
C
Notes :
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the
zero reference level is the midpoint between V
CC
+
and V
CC
.
2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the
dissipation rating is not exceeded.
Outpu t
Non-inverting
input
Inverting
input
V
CC
V
CC
100
1.3k
30k
35k
35k
100
1.3 k
8.2k
Offs e t Null1
Offse t Null2
100
200
SCHEMATIC DIAGRAM (each amplifier)
LF153 - LF253 - LF353
2/9
ELECTRICAL CHARACTERISTICS
V
CC
=
15V, T
amb
= 25
o
C (unless otherwise specified)
Symbol
Parameter
LF153 - LF253 - LF353
Unit
Min.
Typ.
Max.
V
io
Input Offset Voltage (R
S
= 10k
)
T
amb
= 25
o
C
T
min.
T
amb
T
max.
3
10
13
mV
DV
io
Input Offset Voltage Drift
10
V/
o
C
I
io
Input Offset Current *
T
amb
= 25
o
C
T
min.
T
amb
T
max.
5
100
4
pA
nA
I
ib
Input Bias Current *
T
amb
= 25
o
C
T
min.
T
amb
T
max.
20
200
20
pA
nA
A
vd
Large Signal Voltage Gain (R
L
= 2k
, V
O
=
10V)
T
amb
= 25
o
C
T
min.
T
amb
T
max.
50
25
200
V/mV
SVR
Supply Voltage Rejection Ratio (R
S
= 10k
)
T
amb
= 25
o
C
T
min.
T
amb
T
max.
80
80
86
dB
I
CC
Supply Current (no load)
T
amb
= 25
o
C
T
min.
T
amb
T
max.
1.4
3.2
3.2
mA
V
icm
Input Common Mode Voltage Range
11
+15
-12
V
CMR
Common Mode Rejection Ratio (R
S
= 10k
)
T
amb
= 25
o
C
T
min.
T
amb
T
max.
70
70
86
dB
Ios
Output Short-circuit Current
T
amb
= 25
o
C
T
min.
T
amb
T
max.
10
10
40
60
60
mA
V
OPP
Output Voltage Swing
T
amb
= 25
o
C
R
L
=
2k
R
L
= 10k
T
min.
T
amb
T
max.
R
L
=
2k
R
L
= 10k
10
12
10
12
12
13.5
V
SR
Slew Rate
(V
i
= 10V, R
L
= 2k
,
C
L
= 100pF, T
amb
= 25
o
C, unity gain)
12
16
V/
s
t
r
Rise Time
(V
i
= 20mV, R
L
= 2k
, C
L
= 100pF, T
amb
= 25
o
C, unity gain)
0.1
s
K
OV
Overshoot
(V
i
= 20mV, R
L
= 2k
, C
L
= 100pF, T
amb
= 25
o
C, unity gain)
10
%
GBP
Gain Bandwidth Product
(f = 100kHz, T
amb
= 25
o
C, V
in
= 10mV, R
L
= 2k
, C
L
=
100pF)
2.5
4
MHz
R
i
Input Resistance
10
12
THD
Total Harmonic Distortion (f = 1kHz, A
V
= 20dB, R
L
= 2k
,
C
L
= 100pF, T
amb
= 25
o
C, V
O
= 2V
PP
)
0.01
%
e
n
Equivalent Input Noise Voltage (f = 1kHz, R
s
= 100
)
15
nV

Hz
m
Phase Margin
45
Degrees
V
O1
/V
O2
Channel Separation (A
V
= 100, T
amb
= 25
o
C)
120
dB
* The input bias currents are junction leakage currents which approximately double for every 10
o
C increase in the junction temperature.
LF153 - LF253 - LF353
3/9
30
20
25
15
10
5
0
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
100
1K
10K
100K
10M
1M
FREQUENCY (Hz)
Se e Figure 2
= 2k
R
L
= +25 C
T
amb
=
15V
V
CC
=
5V
V
CC
=
10V
V
CC
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
30
20
25
15
10
5
0
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
100
1K
10K
100K
10M
1M
FREQUENCY (Hz)
S e e F igure 2
= +25 C
T
amb
= 1 0k
R
L
V
CC
=
10V
V
CC
=
15V
V
CC
=
5V
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
30
25
20
15
10
5
0
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
FREQUENC Y (Hz)
10k
40k
100k
400k
1M
4M
10M
T
amb
= +25 C
T
a mb
= -55 C
T
a mb
= +125 C
R
L
= 2k
Se e Figure 2
V
CC
=
15V
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREQUENCY
30
25
20
10
5
15
0
-75
-2 5
25
75
125
-5 0
0
50
-5 0
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
TE MP ER ATURE ( C)
V
CC
=
15V
S e e Figu re 2
R
L
= 10k
R
L
= 2k
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS FREE AIR TEMP.
30
25
20
15
10
5
0
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
0.1 0.2
0.4
0.7 1
2
4
7
10
T
a mb
= +25 C
V
CC
= 15V
S e e Figu re 2
LOAD RES ISTANCE (k
)
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS LOAD RESISTANCE
30
25
20
15
10
5
0
2
4
6
8
10
12
14
16
MAXIMUM
PEAK-TO-PEAK
OUTPUT
VOLTAGE
(V)
S UP P LY VOLTAGE (V)
R
L
= 10 k
T
a mb
= +25 C
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE VERSUS SUPPLY VOLTAGE
LF153 - LF253 - LF353
4/9
1 00
1 0
1
0 .1
0 .0 1
INPUT
BIAS
CURRENT
(nA)
-50
-25
0
2 5
50
75
10 0
125
TEMPERATURE ( C)
V
CC
=
1 5V
INPUT BIAS CURRENT VERSUS
FREE AIR TEMPERATURE
1000
400
200
100
20
40
10
4
2
1
DIFFERENTIAL
VOLTAGE
AMPLIFICATION
(V/V)
-75
-50
-25
0
2 5
50
75
100 125
TEMPERATURE ( C )
R
L
= 2k
V
O
=
10V
V
CC
=
15V
LARGE SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION VERSUS
FREE AIR TEMPERATURE
FREQUENC Y (Hz)
DIFFERENTIAL
VOLTAGE
AMPLIFICATION
(V/V)
100
10
100
1K
10K
100K
10M
1M
1
DIFF ERENTIAL
VOLTAGE
AMPLIFICATION
(le ft s ca le )
180
90
0
R
= 2k
C
= 100pF
V
= 15V
T
= +125 C
L
L
CC
a mb
P HASE S HIFT
(right sca le)
LARGE SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION AND PHASE
SHIFT VERSUS FREQUENCY
250
225
200
175
150
100
75
50
25
0
TOTAL
POWER
DISSIPATION
(mV)
-75
-50
-25
0
25
50
75
1 00
125
TEMPERATURE ( C)
No s igna l
No loa d
+/-15V
V
CC
TOTAL POWER DISSIPATION VERSUS
FREE AIR TEMPERATURE
2.0
1 .8
1 .6
1.4
1.2
1.0
0 .8
0 .6
0 .4
0 .2
0
SUPPLY
CURRENT
(mA)
-75
-50
-25
0
25
50
75
10 0
125
TEMPERATURE ( C)
V
CC
=
15V
No signa l
No loa d
SUPPLY CURRENT PER AMPLIFIER
VERSUS FREE AIR TEMPERATURE
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
SUPPLY
CURRENT
(mA)
0
2
4
6
8
10
12
14
16
S UPPLY VOLTAGE (V)
No s ignal
No loa d
= +25 C
T
a mb
SUPPLY CURRENT PER AMPLIFIER
VERSUS SUPPLY VOLTAGE
LF153 - LF253 - LF353
5/9
89
88
87
86
85
84
-50
-25
0
25
50
75
100
125
COMMON
MODE
MODE
REJECTION
RATIO
(dB)
TEMPERATURE ( C)
83
-75
R
L
= 10 k
=
15V
V
CC
COMMON MODE REJECTION RATIO
VERSUS FREE AIR TEMPERATURE
6
4
2
0
-2
-4
0
0.5
1
1.5
2
2.5
3
3.5
INPUT
AND
OUTPUT
VOLTAGES
(V)
TIME (
s )
-6
=
15V
V
CC
R
L
= 2 k
= 100pF
C
L
T
a mb
= +25 C
O UTPUT
INPUT
VOLTAGE FOLLOWER LARGE SIGNAL
PULSE RESPONSE
t
r
28
24
20
16
12
8
4
0
-4
OUTPUT
VOLTAGE
(mV)
0
0.1
0.2
0.3 0.4
0.5
0.6 0.7
TIME (
s )
10%
90%
OVERSHOOT
R
L
= 2k
T
a mb
= +25 C
V
CC
= 15V
OUTPUT VOLTAGE VERSUS
ELAPSED TIME
70
60
50
40
30
20
10
0
EQUIVALENT
INPUT
NOISE
VOLTAGE
(nV/VHz)
10
40
100
400 1k
4k
10k
40k 100k
FREQUENC Y (Hz)
A
V
= 10
R
S
= 100
T
a mb
= +25 C
V
CC
=
15V
EQUIVALENT INPUT NOISE VOLTAGE
VERSUS FREQUENCY
1
0.4
0.1
0.04
0.01
0.004
0.001
TOTAL
HARMONIC
DISTORTION
(%)
100
400
1k
4k
10k
40k
100k
FREQUE NCY (Hz)
A
V
= 1
T
a mb
= +25 C
V
C C
= 15V
= 6V
V
O (rms)
A
V
= 1
T
a mb
= +25 C
= 6V
V
O (rms)
V
C C
=
15V
TOTAL HARMONIC DISTORTION VERSUS
FREQUENCY
LF153 - LF253 - LF353
6/9
-
e
I
LF153
1/2
eo
C
L
= 1 00 pF
R
= 2k
L
Figure 1 : Voltage Follower
PARAMETER MEASUREMENT INFORMATION
-
e
I
LF153
R
L
1/2
C
L
= 1 00 pF
1k
10k
eo
Figure 2 : Gain-of-10 Inverting Amplifier
-
-
LF353
1/2
LF353
1/2
88.4k
18pF
88.4k
88.4k
18pF
18pF
18k
-15V
+15V
1N 4148
1N 4148
18k
6 s in
t
TYPICAL APPLICATIONS
QUADRUPLE OSCILLATOR
LF153 - LF253 - LF353
7/9
PM-DIP8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
3.32
0.131
a1
0.51
0.020
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
D
10.92
0.430
E
7.95
9.75
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0260
i
5.08
0.200
L
3.18
3.81
0.125
0.150
Z
1.52
0.060
DIP8.TBL
LF153 - LF253 - LF353
8/9
PM-SO8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
1.75
0.069
a1
0.1
0.25
0.004
0.010
a2
1.65
0.065
a3
0.65
0.85
0.026
0.033
b
0.35
0.48
0.014
0.019
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.020
c1
45
o
(typ.)
D
4.8
5.0
0.189
0.197
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
3.81
0.150
F
3.8
4.0
0.150
0.157
L
0.4
1.27
0.016
0.050
M
0.6
0.024
S
8
o
(max.)
SO8.TBL
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifi-
cations mentioned in this pub lication are subject to change without notice. This publication supersedes and replaces all infor-
mation previously supplied. STMicroelectronics products are not authorized for use as critical components in life support
devices or systems without express written approval of STMicroelectronics.
The ST log o is a trademark of STMicroelectronics
1998 STMicroelectronics Printed in Italy All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdo m - U.S.A.
ORDER
CODE
:
LF153 - LF253 - LF353
9/9