ChipFind - документация

Электронный компонент: STPS1L40U

Скачать:  PDF   ZIP
1/7
Table 1: Main Product Characteristics
I
F(AV)
1 A
V
RRM
40 V
T
j
(max)
150C
V
F
(max)
0.42 V
STPS1L40
LOW DROP POWER SCHOTTKY RECTIFIER
REV. 5
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
40
V
I
F(RMS)
RMS forward voltage
8
A
I
F(AV)
Average forward current
T
L
= 130C
= 0.5
1
A
I
FSM
Surge non repetitive forward current
tp = 10ms sinusoidal
60
A
I
RRM
Repetitive peak reverse current
tp = 2s F = 1kHz square
1
A
I
RSM
Non repetitive peak reverse current
tp = 100s square
1
A
P
ARM
Repetitive peak avalanche power
tp = 1s Tj = 25C
900
W
T
stg
Storage temperature range
-65 to + 150
C
T
j
Maximum operating junction temperature *
150
C
dV/dt
Critical rate of rise of reverse voltage
10000
V/s
* :
thermal runaway condition for a diode on its own heatsink
dPt ot
dTj
---------------
1
Rth j
a
(
)
--------------------------
>
SMA
(JEDEC DO-214AC)
STPS1L40A
SMB
(JEDEC DO-214AA)
STPS1L40U
August 2004
FEATURES AND BENEFITS
Very small conduction losses
Negligible switching losses
Low forward voltage drop
Surface mount miniature packages
Avalanche capability specified
DESCRIPTION
Single chip Schottky rectifiers suited to Switched
Mode Power Supplies and high frequency DC to
DC converters.
Packaged in SMA and SMB, this device is espe-
cially intended for surface mounting and used in
low voltage, high frequency inverters, free wheel-
ing and polarity protection applications.
Table 2: Order Codes
Part Number
Marking
STPS1L40A
GB4
STPS1L40U
GC4
STPS1L40
2/7
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics
Pulse test:
* tp = 380 s,
< 2%
To evaluate the conduction losses use the following equation: P = 0.23 x I
F(AV)
+ 0.19 I
F
2
(RMS)
Symbol
Parameter
Value
Unit
R
th(j-l)
Junction to lead
SMA
30
C/W
SMB
25
Symbol
Parameter
Tests conditions
Min.
Typ
Max.
Unit
I
R
*
Reverse leakage current
T
j
= 25C
V
R
= V
RRM
35
A
T
j
= 125C
6
10
mA
V
F
*
Forward voltage drop
T
j
= 25C
I
F
= 1A
0.5
V
T
j
= 125C
0.37
0.42
T
j
= 25C
I
F
= 2A
0.63
T
j
= 125C
0.5
0.61
Figure 1: Average forward power dissipation
versus average forward current
Figure 2: Average forward current versus
ambient temperature (
= 0.5)
Figure 3: Normalized avalanche power
derating versus pulse duration
Figure 4: Normalized avalanche power
derating versus junction temperature
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
P
(W)
F(AV)
T
=tp/T
tp
= 1
= 0.5
= 0.2
= 0.1
= 0.05
I
(A)
F(AV)
0
25
50
75
100
125
150
0.0
0.2
0.4
0.6
0.8
1.0
1.2
I
(A)
F(AV)
T
=tp/T
tp
T
(C)
amb
R
=100C/W
th(j-a)
R
=R
th(j-a)
th(j-I)
R
=120C/W
th(j-a)
0.001
0.01
0.1
0.01
1
0.1
10
100
1000
1
t (s)
p
P
(t )
P
(1s)
ARM p
ARM
0
0.2
0.4
0.6
0.8
1
1.2
25
50
75
100
125
150
T (C)
j
P
(t )
P
(25C)
ARM p
ARM
STPS1L40
3/7
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMB)
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35m, recommended pad layout) (SMA)
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35m, recommended pad layout) (SMB)
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
1E-3
1E-2
1E-1
1E+0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
I (A)
M
I
M
t
=0.5
t(s)
T =25C
a
T =50C
a
T =100C
a
1E-3
1E-2
1E-1
1E+0
0
1
2
3
4
5
6
7
I (A)
M
I
M
t
=0.5
t(s)
T =25C
a
T =50C
a
T =100C
a
1E-2
1E-1
1E+0
1E+1
1E+2
5E+2
0.0
0.2
0.4
0.6
0.8
1.0
Z
/R
th(j-c)
th(j-c)
T
=tp/T
tp
t (s)
p
= 0.5
= 0.2
= 0.1
Single pulse
1E-2
1E-1
1E+0
1E+1
1E+2
5E+2
0.0
0.2
0.4
0.6
0.8
1.0
Z
/R
th(j-c)
th(j-c)
T
=tp/T
tp
t (s)
p
= 0.5
= 0.2
= 0.1
Single pulse
I (mA)
R
0
5
10
15
20
25
30
35
40
1E-3
1E-2
1E-1
1E+0
1E+1
2E+1
V (V)
R
T =150C
j
T =100C
j
T =25C
j
1
2
5
10
20
50
10
20
50
100
200
C(pF)
V (V)
R
F=1MHz
T =25C
j
STPS1L40
4/7
Figure 11: Forward voltage drop versus
forward current (typical values, high level)
Figure 12: Forward voltage drop versus
forward current (maximum values, low level)
Figure 13: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35m) (SMA)
Figure 14: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35m) (SMB)
I
(A)
FM
0
100
200
300
400
500
600
700
800
900
1000
0.01
0.10
1.00
10.00
V
(V)
FM
T =25C
j
T =125C
j
T =150C
j
0
100
200
300
400
500
600
700
800
0.0
0.5
1.0
1.5
2.0
2.5
3.0
I
(A)
FM
V
(V)
FM
T =25C
j
T =125C
j
T =150C
j
0
1
2
3
4
5
0
20
40
60
80
100
120
140
S(Cu)(cm)
R
(C/W)
th(j-a)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0
20
40
60
80
100
120
S(Cu)(cm)
R
(C/W)
th(j-a)
STPS1L40
5/7
Figure 15: SMA Package Mechanical Data
Figure 16: SMA Foot Print Dimensions
(in millimeters)
E
C
L
E1
D
A1
A2
b
2.40
1.65
1.45
1.45
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063