ChipFind - документация

Электронный компонент: STPS30L45CT

Скачать:  PDF   ZIP
1/8
STPS30L45CG/CR/CT/CW/CFP
July 2003 - Ed: 3B
LOW DROP POWER SCHOTTKY RECTIFIER
Dual center tap schottky rectifiers suited for
Switched
Mode
Power
Supplies
and
high
frequency DC to DC converters.
Packaged in TO-247, TO-220AB, TO-220FPAB,
D
2
PAK and I
2
PAK these devices are intended for
use in low voltage, high frequency inverters,
free-wheeling and polarity protection applications.
DESCRIPTION
s
LOW FORWARD VOLTAGE DROP MEANING
VERY SMALL CONDUCTION LOSSES
s
LOW SWITCHING LOSSES ALLOWING HIGH
FREQUENCY OPERATION
s
LOW THERMAL RESISTANCE
s
AVALANCHE RATED
s
INSULATED PACKAGE: TO-220FPAB
Insulating voltage: 2000V DC
Capacitance = 45pF
s
AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
A1
K
A2
I
F(AV)
2 x 15 A
V
RRM
45 V
Tj (max)
150 C
V
F
(max)
0.50 V
MAIN PRODUCTS CHARACTERISTICS
K
A1
A2
TO-247
STPS30L45CW
A2
K
A1
D
2
PAK
STPS30L45CG
K
A1
A2
TO-220AB
STPS30L45CT
K
A1
A2
I
2
PAK
STPS30L45CR
A1
A2
K
TO-220FPAB
STPS30L45CFP
STPS30L45CG/CR/CT/CW/CFP
2/8
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
45
V
I
F(RMS)
RMS forward current
30
A
I
F(AV)
Average forward
current
TO-220FPAB
Tc = 110C
= 0.5
Per diode
Per device
15
30
A
TO-220AB, TO-247,
I
2
PAK, D
2
PAK
Tc = 135C
= 0.5
I
FSM
Surge non repetitive forward current
tp = 10 ms Sinusoidal
220
A
I
RRM
Repetitive peak reverse current
tp = 2 s square F=1kHz
1
A
I
RSM
Non repetitive peak reverse current
tp = 100 s square
3
A
P
ARM
Repetitive peak avalanche power
tp = 1s
Tj = 25C
6000
W
T
stg
Storage temperature range
- 65 to + 150
C
Tj
Maximum operating junction temperature *
150
C
dV/dt
Critical rate of rise of reverse voltage
10000
V/s
ABSOLUTE RATINGS (limiting values, per diode)
* :
dPtot
dTj
Rth j
a
<
-
1
(
)
thermal runaway condition for a diode on its own heatsink
Symbol
Parameter
Value
Unit
R
th (j-c)
Junction to case
TO-220FPAB
Per diode
Total
4
3.2
C/W
TO-220AB, TO-247,
I
2
PAK, D
2
PAK
Per diode
Total
1.60
0.85
R
th (c)
TO-220FPAB
Coupling
2.5
C/W
TO-220AB, TO-247,
I
2
PAK, D
2
PAK
0.10
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
th(j-c)
(Per diode) + P(diode 2) x R
th(c)
THERMAL RESISTANCES
Symbol
Parameter
Tests Conditions
Min.
Typ.
Max.
Unit
I
R
*
Reverse leakage
current
Tj = 25C
V
R
= V
RRM
0.4
mA
Tj = 125C
100
200
mA
V
F
*
Forward voltage drop
Tj = 25
C
I
F
= 15 A
0.55
V
Tj = 125C
I
F
= 15 A
0.42
0.50
Tj = 25
C
I
F
= 30 A
0.74
Tj = 125C
I
F
= 30 A
0.59
0.67
Pulse test : * tp = 380 s,
< 2%
To evaluate the conduction losses use the following equation :
P = 0.330 x I
F(AV)
+ 0.011 I
F
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
3/8
STPS30L45CG/CR/CT/CW/CFP
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10
12
IF(av) (A)
PF(av)(W)
T
=tp/T
tp
= 0.05
= 0.1
= 0.2
= 0.5
= 1
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
0
25
50
75
100
125
150
0
2
4
6
8
10
12
14
16
18
Tamb(C)
IF(av)(A)
Rth(j-a)=15C/W
Rth(j-a)=Rth(j-c)
TO-220FPAB
TO-220AB/TO-247/IPAK/DPAK
T
=tp/T
tp
Fig. 2: Average forward current versus ambient
temperature (
=0.5, per diode).
1E-3
1E-2
1E-1
1E+0
0
20
40
60
80
100
120
140
160
180
200
t(s)
IM(A)
Tc=25C
Tc=125C
Tc=75C
I
M
t
=0.5
Fig. 5-1: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode).
1E-3
1E-2
1E-1
1E+0
0
20
40
60
80
100
120
140
t(s)
IM(A)
Tc=25C
Tc=125C
Tc=75C
I
M
t
=0.5
Fig. 5-2: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode) (TO-220FPAB only).
0
0.2
0.4
0.6
0.8
1
1.2
0
25
50
75
100
125
150
T (C)
j
P
(t )
P
(25C)
ARM p
ARM
Fig. 4: Normalized avalanche power derating
versus junction temperature.
0.001
0.01
0.1
0.01
1
0.1
10
100
1000
1
t (s)
p
P
(t )
P
(1s)
ARM p
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
4/8
STPS30L45CG/CR/CT/CW/CFP
0
5
10
15
20
25
30
35
40
45
1E-2
1E-1
1E+0
1E+1
1E+2
5E+2
VR(V)
IR(mA)
Tj=100C
Tj=75C
Tj=25C
Tj=150C
Tj=125C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values, per diode).
1
2
5
10
20
50
100
200
500
1000
2000
VR(V)
C(pF)
F=1MHz
Tj=25C
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values, per diode).
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
1
10
100
200
VFM(V)
IFM(A)
Typical values
Tj=150C
Tj=25C
Tj=125C
Fig. 9: Forward voltage drop versus forward
current (maximum values, per diode).
0
5
10
15
20
25
30
35
40
0
10
20
30
40
50
60
70
80
S(cm)
Rth(j-a) (C/W)
Fig. 10: Thermal resistance junction to ambient
versus copper surface under tab for D
2
PAK (Epoxy
printed circuit board FR4, copper thickness: 35m).
1E-4
1E-3
1E-2
1E-1
1E+0
0.0
0.2
0.4
0.6
0.8
1.0
tp(s)
Zth(j-c)/Rth(j-c)
= 0.5
= 0.2
= 0.1
Single pulse
T
=tp/T
tp
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration.
1E-3
1E-2
1E-1
1E+0
1E+1
0.0
0.2
0.4
0.6
0.8
1.0
tp(s)
Zth(j-c)/Rth(j-c)
T
=tp/T
tp
= 0.5
= 0.2
= 0.1
Single pulse
Fig. 6-2: Relative variation of thermal impedance
junction
to
case
versus
pulse
duration.
(TO-220FPAB)
5/8
STPS30L45CG/CR/CT/CW/CFP
s
Cooling method : C
s
Recommended torque value : 0.55 m.N
s
Maximum torque value : 0.70 m.N
PACKAGE MECHANICAL DATA
TO-220AB
A
C
D
L7
Dia
L5
L6
L9
L4
F
H2
G
G1
L2
F2
F1
E
M
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
F2
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
G1
2.40
2.70
0.094
0.106
H2
10
10.40
0.393
0.409
L2
16.4 typ.
0.645 typ.
L4
13
14
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
2.6 typ.
0.102 typ.
Diam.
3.75
3.85
0.147
0.151
PACKAGE MECHANICAL DATA
I
2
PAK
e
D
L
L1
L2
b1
b
b2
E
A
c2
A1
c
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
A1
2.49
2.69
0.098
0.106
b
0.70
0.93
0.028
0.037
b1
1.14
1.17
0.044
0.046
b2
1.14
1.17
0.044
0.046
c
0.45
0.60
0.018
0.024
c2
1.23
1.36
0.048
0.054
D
8.95
9.35
0.352
0.368
e
2.40
2.70
0.094
0.106
E
10.0
10.4
0.394
0.409
L
13.1
13.6
0.516
0.535
L1
3.48
3.78
0.137
0.149
L2
1.27
1.40
0.050
0.055