ChipFind - документация

Электронный компонент: STPS3L60Q

Скачать:  PDF   ZIP
1/6
STPS3L60/Q/U
July 2003 - Ed: 5A
POWER SCHOTTKY RECTIFIER
Axial and Surface Mount Power Schottky rectifier
suited for Switch Mode Power Supplies and high
frequency DC to DC converters. Packaged in
DO-201AD, DO-15 and SMB, this device is
intended for use in low voltage, high frequency
inverters and small battery chargers.
For
applications
where
there
are
space
constraints, e.g Telecom battery charger.
DESCRIPTION
s
NEGLIGIBLE SWITCHING LOSSES
s
LOW THERMAL RESISTANCE
s
AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
60
V
I
F(RMS)
RMS forward current
10
A
I
F(AV)
Average forward current
T
L
= 105C
= 0.5
(DO-201AD, SMB)
3
A
T
L
= 75C
= 0.5
(DO-15)
I
FSM
Surge non repetitive forward current
t
p
= 10 ms Sinusoidal
100
A
P
ARM
Repetitive peak avalanche power
tp = 1s
Tj = 25C
2000
W
T
stg
Storage temperature range
- 65 to + 150
C
T
j
Maximum operating junction temperature *
150
C
dV/dt
Critical rate of rise of reverse voltage
10000
V/s
ABSOLUTE RATINGS (limiting values)
I
F(AV)
3 A
V
RRM
60 V
Tj (max)
150C
V
F
(max)
0.61 V
MAIN PRODUCT CHARACTERISTICS
DO-201AD
STPS3L60
* :
dPtot
dTj
Rth j
a
<
-
1
(
)
thermal runaway condition for a diode on its own heatsink
DO-15
STPS3L60Q
SMB
STPS3L60U
STPS3L60/Q/U
2/6
Symbol
Parameter
Tests conditions
Min.
Typ.
Max.
Unit
I
R
*
Reverse leakage current
T
j
= 25C
V
R
= V
RRM
150
A
T
j
= 100C
4
15
mA
T
j
= 125C
14
30
V
F
*
Forward voltage drop
T
j
= 25C
I
F
= 3 A
0.62
V
T
j
= 100C
0.53
0.61
T
j
= 125C
0.51
0.59
T
j
= 25C
I
F
= 6 A
0.79
T
j
= 100C
0.62
0.71
T
j
= 125C
0.6
0.69
Pulse test : * tp = 380 s,
< 2%
To evaluate the maximum conduction losses use the following equation:
P = 0.44 x I
F(AV)
+ 0.05 x I
F
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Value
Unit
R
th(j-l)
Junction to leads
Lead length = 10 mm
DO-201AD
20
C/W
SMB
20
DO-15
35
THERMAL RESISTANCES
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.0
0.5
1.0
1.5
2.0
2.5
T
=tp/T
tp
= 0.05
= 0.1
= 0.2
= 0.5
= 1
P
(W)
F(AV)
I
(A)
F(AV)
Fig. 1: Average forward power dissipation versus
average forward current.
0
25
50
75
100
125
150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T
=tp/T
tp
I
(A)
F(AV)
T
(C)
amb
R
=R
th(j-a)
th(j-I)
R
=80C/W
th(j-a)
Fig. 2-1: Average forward current versus ambient
temperature (
= 0.5) (DO-201AD, SMB).
STPS3L60/Q/U
3/6
1E-3
1E-2
1E-1
1E+0
0
2
4
6
8
10
12
I
M
t
=0.5
I (A)
M
t(s)
T =25C
a
T =50C
a
T =100C
a
Fig. 5-1: Non repetitive surge peak forward
current
versus
overload
duration
(maximum
values) (DO-201AD, SMB).
1E-1
1E+0
1E+1
1E+2
1E+3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
T
=tp/T
tp
= 0.5
= 0.2
= 0.1
Single pulse
Z
/R
th(j-a)
th(j-a)
t (s)
p
Fig. 6-1: Relative variation of thermal impedance
junction
to
ambient
versus
pulse
duration
(DO-201AD, SMB).
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
25
50
75
100
125
150
T
=tp/T
tp
I
(A)
F(AV)
T
(C)
amb
R
=R
th(j-a)
th(j-I)
R
=100C/W
th(j-a)
Fig. 2-2: Average forward current versus ambient
temperature (
= 0.5) (DO-15).
0
1
2
3
4
5
6
7
8
9
10
11
1.E-03
1.E-02
1.E-01
I
M
t
=0.5
I (A)
M
t(s)
T =25C
a
T =50C
a
T =100C
a
Fig. 5-2: Non repetitive surge peak forward
current
versus
overload
duration
(maximum
values) (DO-15).
0
0.2
0.4
0.6
0.8
1
1.2
0
25
50
75
100
125
150
T (C)
j
P
(t )
P
(25C)
ARM p
ARM
Fig. 4: Normalized avalanche power derating
versus junction temperature.
0.001
0.01
0.1
0.01
1
0.1
10
100
1000
1
t (s)
p
P
(t )
P
(1s)
ARM p
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
STPS3L60/Q/U
4/6
1
10
0.0
0.5
1.0
1.5
2.0
2.5
30
I
(A)
FM
V
(V)
FM
T =25C
j
T =100C
(maximum values)
j
T =100C
(typical values)
j
Fig. 9-1: Forward voltage drop versus forward
current (high level, maximum values).
0
1
2
3
4
5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
I
(A)
FM
V
(V)
FM
T =25C
j
T =100C
(maximum values)
j
T =100C
(typical values)
j
Fig. 9-2: Forward voltage drop versus forward
current (low level, maximum values).
1
10
100
10
20
50
100
200
500
C(pF)
V (V)
R
F=1MHz
T =25C
j
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0
20
40
60
80
100
120
R
(C/W)
th(j-)
S(Cu)(cm)
Fig. 10: Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board FR4, Cu: 35m) (SMB).
0
5
10
15
20
25
30
35
40
45
50
55
60
1E-3
1E-2
1E-1
1E+0
1E+1
5E+1
I (mA)
R
V (V)
R
T =125C
j
T =100C
j
T =25C
j
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
T
=tp/T
tp
= 0.1
= 0.2
= 0.5
Single pulse
Z
/R
th(j-a)
th(j-a)
t (s)
p
Fig. 6-2: Relative variation of thermal impedance
junction to ambient versus pulse duration (DO-15).
STPS3L60/Q/U
5/6
PACKAGE MECHANICAL DATA
DO-15 plastic
A
C
C
D
B
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
6.05
6.75
0.238
0.266
B
2.95
3.53
0.116
0.139
C
26
31
1.024
1.220
D
0.71
0.88
0.028
0.035
PACKAGE MECHANICAL DATA
DO-201AD plastic
B
A
E
E
D
D
C
B
note 2
note 1
note 1
REF.
DIMENSIONS
NOTES
Millimeters
Inches
Min.
Max.
Min.
Max.
A
9.50
0.374
1 - The lead diameter
D is not controlled over zone E
2 - The minimum axial length within which the device
may be placed with its leads bent at right angles is
0.59"(15 mm)
B
25.40
1.000
C
5.30
0.209
D
1.30
0.051
E
1.25
0.049