ChipFind - документация

Электронный компонент: STTA2512P

Скачать:  PDF   ZIP
1/9
Table 1: Main Product Characteristics
I
F(AV)
1 A
V
RRM
600 V
I
R
(max)
75 A
T
j
175C
V
F
(typ)
1.0 V
t
rr
(max)
25 ns
STTH1R06
TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
600
V
I
F(RMS)
RMS forward voltage
DO-41
10
A
SMA / SMB
7
I
F(AV)
Average forward current
DO-41
Tc = 100C
= 0.5
1
A
SMA
Tc = 125C
= 0.5
SMB
Tc = 135C
= 0.5
I
FSM
Surge non repetitive forward
current
DO-41
tp = 10ms sinusoidal
25
A
SMA / SMB
20
T
stg
Storage temperature range
-65 to + 175
C
T
j
Maximum operating junction temperature
175
C
DO-41
STTH1R06
SMA
STTH1R06A
SMB
STTH1R06U
February 2005
REV. 3
FEATURES AND BENEFITS
Ultrafast switching
Low reverse recovery current
Low thermal resistance
Reduces switching & conduction losses
DESCRIPTION
The STTH1R06, which is using ST Turbo 2 600V
technology, is specially suited as boost diode in
power factor correction circuitry.
The device is also intended for use as a free
wheeling diode in power supplies and other power
switching applications.
Table 2: Order Codes
Part Number
Marking
STTH1R06
STTH1R06
STTH1R06RL
STTH1R06
Part Number
Marking
STTH1R06A
HR6
STTH1R06U
BR6
STTH1R06
2/9
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics
To evaluate the conduction losses use the following equation: P = 1.03 x IF(AV) + 0.27 IF
2
(RMS)
Table 6: Dynamic Characteristics
Symbol
Parameter
Value (max).
Unit
R
th(j-l)
Junction to lead
L = 10mm
DO-41
45
C/W
SMA
30
SMB
25
R
th(j-a)
Junction to ambient
(1)
L = 10mm
DO-41
70
C/W
Note 1:
R
th(j-a) is measured with a copper area S = Scm
2
(see figure12).
Symbol
Parameter
Test conditions
Min.
Typ
Max.
Unit
I
R
Reverse leakage current T
j
= 25C
V
R
= V
RRM
1
A
T
j
= 150C
10
75
V
F
Forward voltage drop
T
j
= 25C
I
F
= 1A
1.7
V
T
j
= 150C
1.0
1.25
Symbol
Parameter
Test conditions
Min.
Typ Max.
Unit
t
rr
Reverse recovery
time
T
j
= 25C
I
F
= 0.5A Irr = 0.25A I
R
=1A
25
ns
I
F
= 1A dI
F
/dt = -50 A/s V
R
=30V
30
45
t
fr
Forward recovery
time
T
j
= 25C
I
F
= 1A dI
F
/dt = 100 A/s
V
FR
= 1.1 x V
Fmax
100
ns
V
FP
Forward recovery
voltage
T
j
= 25C
I
F
= 1A dI
F
/dt = 100 A/s
V
FR
= 1.1 x V
Fmax
10
V
STTH1R06
3/9
Figure 1: Conduction losses versus average
forward current
Figure 2: Forward voltage drop versus forward
current
Figure 3: Relative variation of thermal
impedance junction to case versus pulse
duration (DO-41)
Figure 4: Relative variation of thermal
impedance junction to case versus pulse
duration (SMA)
Figure 5: Relative variation of thermal
impedance junction to case versus pulse
duration (SMB)
Figure 6: Peak reverse recovery current
versus dI
F
/dt (typical values)
P(W)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
T
=tp/T
tp
I
(A)
F(AV)
= 1
= 0.5
= 0.05
= 0.1
= 0.2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
1
2
3
4
5
I
(A)
FM
V
(V)
FM
T =25C
(maximum values)
j
T =125C
(maximum values)
j
T =125C
(typical values)
j
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
= 0.5
= 0.2
= 0.1
Single pulse
T
=tp/T
tp
Z
/R
th(j-c)
th(j-c)
t (s)
p
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Z
/R
th(j-c)
th(j-c)
T
=tp/T
tp
t (s)
p
Single pulse
= 0.2
= 0.1
= 0.5
S = 1cm
2
Z
/R
th(j-c)
th(j-c)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
T
=tp/T
tp
t (s)
p
Single pulse
= 0.2
= 0.1
= 0.5
S = 1cm
2
I
(A)
RM
0
1
2
3
4
5
6
7
8
9
0
50
100
150
200
250
300
350
400
450
500
I =0.5 x I
F
F(AV)
I =0.25 x I
F
F(AV)
I =I
F
F(AV)
I =2 x I
F
F(AV)
V =400V
T =125C
R
j
dI /dt(A/s)
F
STTH1R06
4/9
Figure 7: Reverse recovery time versus dI
F
/dt
(typical values)
Figure 8: Reverse recovery charges versus
dI
F
/dt (typical values)
Figure 9: Reverse recovery softness factor
versus dI
F
/dt (typical values)
Figure 10: Relative variations of dynamic
parameters versus junction temperature
Figure 11: Transient peak forward voltage
versus dI
F
/dt (typical values)
Figure 12: Forward recovery time versus dI
F
/dt
(typical values)
t (ns)
rr
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
0
50
100
150
200
250
300
350
400
450
500
I =2 x I
F
F(AV)
I =I
F
F(AV)
I =0.5 x I
F
F(AV)
V =400V
T =125C
R
j
dI /dt(A/s)
F
Q (nC)
rr
0
25
50
75
100
125
150
175
200
225
250
0
50
100
150
200
250
300
350
400
450
500
I =2 x I
F
F(AV)
I =I
F
F(AV)
I =0.5 x I
F
F(AV)
dI /dt(A/s)
F
V =400V
T =125C
R
j
S factor
0
1
2
3
4
5
6
0
50
100
150
200
250
300
350
400
450
500
I =I
T =125C
F
F(AV)
j
V =400V
R
dI /dt(A/s)
F
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
25
50
75
100
125
T (C)
j
I =I
Reference: T =125C
F
F(AV)
j
V =400V
R
I
RM
Q
RR
S factor
V
(V)
FP
0
5
10
15
20
25
0
20
40
60
80
100
120
140
160
180
200
dI /dt(A/s)
F
I =I
T =125C
F
F(AV)
j
t (ns)
fr
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
80
100
120
140
160
180
200
I =I
T =125C
F
F(AV)
j
V
=1.1 x V max.
FR
F
dI /dt(A/s)
F
STTH1R06
5/9
Figure 13: Junction capacitance versus
reverse voltage applied (typical values)
Figure 14: Thermal resistance junction to
ambient versus copper surface under each
lead (epoxy FR4, e
CU
=35m) (DO-41, SMB)
Figure 15: Thermal resistance junction to
ambient versus copper surface under each
lead (epoxy FR4, e
CU
=35m) (SMA)
1
10
100
1
10
100
1000
C(pF)
V (V)
R
F=1MHz
V
=30mV
T =25C
OSC
j
0
10
20
30
40
50
60
70
80
90
100
110
0
1
2
3
4
5
6
7
8
9
10
R
(C/W)
th(j-a)
S(cm)
DO-41
Lleads = 10mm
SMB
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
R
(C/W)
th(j-a)
S(cm)
SMA