ChipFind - документация

Электронный компонент: TSH321ID

Скачать:  PDF   ZIP
TSH321
WIDE BANDWIDTH AND MOS INPUTS
SINGLE OPERATIONAL AMPLIFIER
June 1998
ORDER CODES
Part
Number
Temperature
Range
Package
N
D
TSH321I
-40
o
C, 125
o
C
321-01.TBL
1
2
3
4
8
6
5
7
Inverting Input
Non-inverting Input
Output
Offset Null 2
Offset Null 1
N.C.
V
CC
V
CC
+
321-01.EPS
PIN CONNECTIONS (top view)
.
LOW DISTORTION
.
GAIN BANDWIDTH PRODUCT : 300MHz
.
GAIN OF 2 STABILITY
.
SLEW RATE : 400V/
s
.
VERY FAST SETTLING TIME : 60ns (0.1%)
.
VERY HIGH INPUT IMPEDANCE
D
SO8
(Plastic Micropackage)
N
DIP8
(Plastic Package)
DESCRIPTION:
The TSH321 is a wideband monolithic operational
amplifier, requiring a minimum close loop gain of 2
for stability.
The TSH321 features extremely high input imped-
ance (typically greater than 10
12
) allowing direct
interfacing with high impedance sources.
Low distortion, wide bandwidth and high linearity
make this amplifier suitable for RF and video appli-
cations. Short circuit protection is provided by an
internal current-limiting circuit.
The TSH321 has internal electrostatic discharge
(ESD) protection circuits and fulfills MILSTD883C-
Class2.
1/6
3
non inverting
input
2
inverting
input
1
8
Offset N1
Offset N2
7 V
CC
+
C
c
6
output
Internal
V
CC
-
4
V
ref
321-02.EPS
SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
V
CC
Supply Voltage
7
V
V
id
Differential Input Voltage
5
V
V
i
Input Voltage Range
5
V
I
in
Current On Offset Null Pins
20
mA
T
oper
Operating Free-Air Temperature Range
TSH321I
-40
o
C, 125
o
C
o
C
321-02.TBL
N1
N 2
TSH321
100k
V
CC
321-03.EPS
INPUT OFFSET VOLTAGE NULL CIRCUIT
OPERATING CONDITIONS
Symbol
Parameter
Value
Unit
V
CC
Supply Voltage
3 to
6
V
V
ic
Common Mode Input Voltage Range
V
CC
-
to V
CC
+
-3
V
321-03.TBL
TSH321
2/6
ELECTRICAL CHARACTERISTICS
V
CC
=
5V, T
amb
= 25
o
C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
V
io
Input Offset Voltage
T
min
T
amb
T
max.
0.5
10
12
mV
DV
io
Input Offset Voltage Drift
T
min
T
amb
T
max.
10
V/
o
C
I
ib
Input Bias Current
2
300
pA
I
io
Input Offset Current
2
200
pA
I
CC
Supply Current, no load
V
CC
=
5V
V
CC
=
3V
V
CC
=
6V
T
min
T
amb
T
max.
V
CC
=
5V
23
21
25
30
28
40
32
mA
A
vd
Large Signal Voltage Gain
V
o
=
2.5V
R
L
=
R
L
= 100
R
L
= 50
800
300
200
1300
850
650
V/V
V
icm
Input Common Mode Voltage Range
-5 to +2
-5.5 to +2.5
V
CMR
Common Mode Rejection Ratio
V
ic
= V
icm min.
60
100
dB
SVR
Supply Voltage Rejection Ratio
V
CC
=
5V to
3V
50
70
dB
V
o
Output Voltage
R
L
= 100
R
L
= 50
T
min
T
amb
T
max.
R
L
= 100
R
L
= 50
3
2.8
2.9
2.7
+3.5
-3.7
+3.3
-3.5
V
I
o
Output Short Circuit Current
V
id
=
1V, V
o
= 0V
50
100
mA
GBP
Gain Bandwidth Product
A
VCL
= 100, R
L
= 100
, C
L
= 15pF, f = 7.5MHz
300
MHz
SR
Slew Rate
V
in
=
1V, A
VCL
= 2 R
L
= 100
, C
L
= 15pF
200
400
V/
s
e
n
Equivalent Input Voltage Noise
R
S
= 50
fo = 1kHz
fo = 10kHz
fo = 100kHz
fo = 1MHz
20
18.2
18.1
18.2
nV

Hz
K
ov
Overshoot
V
in
=
1V A
VCL
= 2, R
L
= 100
, C
L
= 15pF
15
%
t
s
Settling Time 0.1% - (note 1)
V
in
=
1V, A
VCL
= -1
60
ns
t
r
, t
f
Rise and Fall Time - (note 1)
V
in
=
100mV, A
VCL
= 2
2
ns
t
d
Delay Time - (note 1)
V
in
=
100mV, A
VCL
= 2
2
ns
m
Phase Margin
A
VM
= 2, R
L
= 100
,
C
L
= 15pF
45
Degrees
THD
Total Harmonic Distortion
A
VCL
= 10, f = 1KHz, V
o
=
2.5V, no load
0.02
%
FPB
Full Power Bandwidth - (note 2)
V
o
= 5Vpp, R
L
= 100
V
o
= 2Vpp, R
L
= 100
26
64
MHz
Note 1 :
See test waveform figure
Note 2 :
Full power bandwidth =
SR
V
opp
321-04.TBL
TSH321
3/6
V
in
50%
t
d
t
r
90%
t
s
0.1% of edge amplitude
10%
321-04.EPS
TEST WAVEFORM
Input
50
1k
1k
10nF
10
F
C
F
-5V
+5V
10nF
10
F
50
Output
321-05.EPS
EVALUATION CIRCUIT
As for any high frequency device, a few rules must
be observed when designing the PCB to get the best
performances from this high speed op amp.
From the most to the least important points :
Each power supply lead has to be bypassed
to ground with a 10nF ceramic capacitor very
close to the device and a 10
F tantalum ca-
pacitor.
To provide low inductance and low resistance
common return, use a ground plane or com-
mon point return for power and signal.
All leads must be wide and as short as possi-
ble especially for op amp inputs. This is in
order to decrease parasitic capacitance and
inductance.
Use small resistor values to decrease time
constant with parasitic capacitance.
Choose component sizes as small as possible
(SMD).
On output, decrease capacitor load so as to
avoid circuit stability being degraded which
may cause oscillation. One can also add a
serial resistor in order to minimise its influ-
ence.
One can add in parallel with feedback resistor
a few pF ceramic capacitor C
F
adjusted to
optimize the settling time.
PRINTED CIRCUIT LAYOUT
TSH321
4/6
PM-DIP8.EPS
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
3.32
0.131
a1
0.51
0.020
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
D
10.92
0.430
E
7.95
9.75
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0260
i
5.08
0.200
L
3.18
3.81
0.125
0.150
Z
1.52
0.060
DIP8.TBL
TSH321
5/6