ChipFind - документация

Электронный компонент: TQ9303

Скачать:  PDF   ZIP
T
R
I Q
U
I
N
T
S E M I C O N D U C T O R , I N C .
1
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
The TQ9303 ENDEC (ENcoder/DECoder) implements 8b/10b encoding
and decoding, ordered set encoding and decoding, and parity checking
and generation as defined in the Fibre Channel Physical Signaling
Interface Standard (FC-PH). The ENDEC fully implements the FC-1 layer
of the Fibre Channel Standard. Implemented in a 0.8-micron CMOS
process, the ENDEC also performs 32-bit CRC checking and generation
as defined in the FC-2 layer of the Fibre Channel specification.
The TQ9303 ENDEC interfaces directly to TriQuint's FC-0 layer Fibre Channel
Transmitter (Tx) and Receiver (Rx) chipsets at the speeds shown below:
FC Rate
Transmitter
Receiver
Data Rate (Mbaud)
FC-266
GA9101
GA9102
194266
FC-531
TQ9501
TQ9502
500625
FC-1063
TQ9501
TQ9502
10001250
Triquint's Transmitter and Receiver devices are designed with TriQuint's
proprietary 0.7-micron GaAs process. The Tx and Rx interface directly to
copper-based electrical media or to a fiber-optic module. The Transmitter
performs parallel-to-serial conversion on the encoded data and generates
the internal high-speed clock for the serial output data stream. The Receiver
recovers the clock and data from the input serial stream, performs serial-
to-parallel conversion, and detects and aligns on the K28.5 character.
Figure 1. TQ9303 Block Diagram
TQ9501
or
GA9101
Tx
2
TQ9303
ENDEC
TQ9502
or
GA9102
Rx
2
Data
10
Data
Data
32
Control
12
HOST
10
Parity
4
Parity
4
Control
11
Data
32
Control
2
Control
2
2
Optical Tx
or
Copper
Interface
Optical Rx
or
Copper
Interface
TQ9303
Fibre Channel
Encoder/Decoder
Features
Compliant with ANSI X3T11
Fibre Channel Standard
Full implementation of
Fibre Channel's FC-1 layer
Interfaces directly with
TriQuint's GA9101/GA9102
and TQ9501/TQ9502 FC-0
Fibre Channel chipsets
Suitable for proprietary serial
links (virtual ribbon cable)
Implements 8b/10b encoding
and decoding
Implements ordered set
encoding and decoding
Checks and generates 32-bit
CRC and parity
10-bit TTL-compatible interface
to Transmitter and Receiver
32-bit interface to the host
Fully synchronous operation
160-pin PQFP
TQ9303
2
For additional information and latest specifications, see our website: www.triquint.com
Fibre Channel provides a transport vehicle for Intelligent
Peripheral Interface (IPI) and Small Computer System
Interface (SCSI) upper layer command sets, High-
Performance Parallel Interface (HIPPI) data link layer,
and other user-defined command sets. Fibre Channel
replaces the SCSI, IPI, and HIPPI physical interfaces
with a protocol-efficient alternative that provides
performance improvements over distance and speed.
Fibre Channel is optimized for predictable transfers of
large blocks of data such as those used in file transfers
between processors (such as super computers, main-
frames, and super minis), storage systems (such as disk
and tape drives), communications devices, and output-
only devices (such as laser printers and raster scan
Figure 2. TQ9303 ENDEC Block Diagram
graphics terminals). The Fibre Channel protocol is
implemented in hardware, making it simple, efficient,
and robust.
The lower level physical interface is decoupled from the
higher level protocol, allowing Fibre Channel to be config-
ured with various topologies. Point-to-point, multi-drop
bus, ring, and cross-point switch topologies are permit-
ted in Fibre Channel, optimizing it for specific applications.
Fibre Channel supports distances up to 10 Km at baud
rates of 132.8125 Mbaud to 1.0625 Gbaud. Coax and
STP (Shielded Twisted Pair) are used at lower data
rates and shorter distances, while fiber-optic cables are
used for higher data rates and longer distances.
ENCODER SECTION
CTXCERR
CTXD0..31
CTXP0..3,
CTXRAW,
CTXC1,
CTXPERR
BTXD0..9
RESETN
CTXRAWB
CTXRAWA,
CTXPENN,
CTXPMODE
Mux
32-BIT CRC
Generator/
Checker
Ordered Set
Encoder
Parity
Checker/
Generator
8b/10b
Encoder
Mux
Word-to-
Half-Word
Shifter
Half-Word-
to-Byte
Shifter
Register
CTXC0,
BTXCKIN
BTXCKOUT
CTXWREF
CTXCLK
Clock Generator
Word
Clk
Byte
Clk
Half Word
Clk
32
10
40
8
20
17
3
40
32
17
20
17
10
Byte-to-
Half-Word
Shifter
Register
32-Bit CRC
Checker
Ordered Set
Decoder
Mux
Half-Word-
to-Word
Shifter
10b/8b
Decoder
Parity
Generator
Line State
Decoder
CRXD0..31
CRXP0..3,
RXERROR
BRXD0..9
BRXSYNC
RAW Rx,
CRXS5
CRXCLK
BRXCLK
WRDSYNC
RXPMODE
RXCKPH0,1
Word
Clk
Byte
Clk
Half Word
Clk
Clock Generator
DECODER SECTION
CRXS0,
CRXS2..4
CRXS1
1
2
2
10
20
16
20
4
36
8
16
3
Word Sync
Detector
20
40
1
Register
Register
Register
Register
TQ9303
3
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Functional Description
The TQ9303 may be divided into two independent
functional sections: the Encoder and Decoder, as
shown in Figure 2. The Encoder section describes the
flow of data from the host to the transmitter.
Conversely, the Decoder section describes the flow of
data from the receiver to the host. Designed for full-
duplex operation, the Encoder and Decoder will
transmit and receive one at a time or simultaneously.
The Encoder performs 8b/10b encoding of information
from the host to the transmitter. The Decoder performs
10b/8b decoding of information from the receiver to
the host. The host interface is denoted by a letter C (as
in CTXP), and the transmit/receive interface is denoted
by a letter B (as in BTXD0). Pins within the Encoder
section are denoted with the letters TX (as in CTXP),
and pins within the Decoder section are denoted with
RX (as in CRXS1). At the host interface, the TQ9303
has a 32-bit transmit data bus and a 32-bit receive data
bus, each with 4-bit parity and 8-bit control. The
transmitter and receiver interfaces to the TQ9303 are
10-bit data buses. Table 5 includes all the pin
descriptions. Detailed descriptions of the Encoder and
Decoder sections follow.
Encoder Section
The Encoder has several functional blocks:
Parity Check, 32-Bit CRC, Ordered Set generator,
8b/10b Encoder, and Clock Generator. The Encoder
section has two modes of operation: Normal mode and
Raw mode. In the Normal mode, the Encoder section
receives a word from the host interface, checks parity,
calculates CRC, divides the word into bytes, encodes
them using 8b/10b, and generates a 10-bit output, as
illustrated in Figure 2. In the Raw mode, the Encoder
section receives a word from the host interface without
parity check, CRC check, or 8b/10b encoding.
The following is the encode sequence data flow:
1. Word input
2. Parity check
3. Wordtohalf-word conversion
4. Ordered set encoding
5. 32-bit CRC check or generate
6. Muxing between ordered set, 32-bit CRC, and
unchanged input
7. 8b/10b encoding
8. Muxing between unchanged input and
encoded word
9. Half-wordtobyte conversion
10. Byte output
Parity Check Block
Parity check depends on the TXPENN (Transmit Parity
ENable Not) input. TXPENN high ignores parity, while
TXPENN low checks parity for each byte on the data
bus, CTXD0..31. There are four parity bits (CTXP0..3),
each bit corresponding to a byte of data, as follows:
CTXP0 to CTXD0..7, CTXP1 to CTXD8..15, CTXP2 to
CTXD16..23, and CTXP3 to CTXD24..31. Control bit
TXPMODE (Transmit Parity MODE) alters the normal
meaning of CTXP3. TXPMODE low is the normal mode,
where CTXP3 checks for parity for CTXD24..31. With
TXPMODE high, CTXP3 checks for parity for
CTXD24..31 and CTXC0. CTXC0 is a control input
which indicates whether CTXD0..31 is data or an
ordered set. An ordered set is a Fibre Channel word
where the most significant byte is composed of a valid
special character, K28.5, as defined in the standard.
Appendix A includes a table of valid special characters.
The parity bits follow odd parity convention, where it is
high if the number of ones is even and low if the
number of ones is odd.
TQ9303
4
For additional information and latest specifications, see our website: www.triquint.com
CTXPERR (Transmit Parity ERRor) is driven high
when an error is detected in the parity check mode.
When parity checking is disabled, CTXPERR is driven
low. In Raw Mode transmit, where the data flow
bypasses the parity check, 32-bit CRC, 8b/10b encoder,
and ordered set encoder, CTXPERR is driven low.
32-Bit CRC Block
32-bit Cyclic Redundancy Checking (CRC) generates
or checks CRC, depending on CTXC1. CTXC1 high
generates CRC, while CTXC1 low checks CRC for the
incoming frame. The CRC used in Fibre Channel is the
same as FDDI's frame check sequence, where a 32-
bit CRC is computed for every frame, starting after
SOF (Start Of Frame) and ending a byte before EOF
(End Of Frame). The resulting 32-bit CRC is
automatically inserted into the frame before EOF.
In the check CRC mode, CTXCERR (Transmit Crc
ERRor) is driven high when a CRC error is detected.
In the generate CRC mode, CTXCERR is driven low. In
Raw Mode transmit where the data flow bypasses the
parity check, 32-bit CRC, 8b/10b encoder, and ordered
set encoder, CTXCERR is driven low.
The Generate CRC mode timing diagrams are shown in
Figure 3. CTXC1 is high for the entire frame, when
generating CRC. CTXC0 is high only for the duration of
SOF, indicating that the input word (CTXD0..31) is an
ordered set. Similarly, CTXC0 is high for the duration of
EOF, which is another ordered set. The 32-bit CRC
block computes the CRC for data after SOF and before
EOF. The resulting CRC is inserted between the last
data word and EOF at the output (BTXD0..9).
The Check CRC mode timing diagrams are shown in
Figure 4. CTXC1 is low for the whole frame when
checking CRC. CTXC0 is high only for the duration of
SOF, indicating that the input word (CTXD0..31) is an
ordered set. Similarly, CTXC0 is high for the duration of
EOF, another ordered set. 32-bit CRC begins after SOF
Figure 3. Generate CRC Mode TIming
BTXD0..9
D0
Dn
CRC
4 Bytes
SOF
D0
D1
Dn
EOF
SOF
CRC Computation
CTXD0..31
CTXC1
CTXC0
EOF
Dn-1
"d"
Idle
TQ9303
5
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
and ends before EOF. CTXCERR remains low if the
computed CRC matches the CRC input on CTXD0..31.
CTXCERR is driven high for one word cycle after the
end of EOF.
If CTXC1 is high (generate CRC) then the ENDEC will
add one word (the CRC) to the user's data frame before
encoding the EOF. In this situation, when the user
commands the ENDEC to encode an EOF, it is latched
for one CTXCLK cycle while the ENDEC inserts the
generated CRC in the data stream. Then the requested
EOF is encoded. During the encoding of the EOF (that
is, the one that was latched for encoding after the CRC
was inserted) the ENDEC ignores the CTX inputs.
Ordered Set Generator Block
An ordered set is a Fibre Channel word in which the
first byte is a K28.5 special character, followed by valid
data characters. Appendix B contains tables for the
ordered set coding scheme. When CTXC0 is high, the
ordered set generator generates an ordered set from
the most significant byte of the input data, CTXD24..31.
Although only the most significant byte of the input
word is required for generating an ordered set, and
lower order bits CTXD0..23 are "don't cares" for
encoding the ordered set, parity checking is performed
on the word. Valid word parity must be maintained to
prevent parity errors.
If a parity or CRC error is detected within a frame,
some EOF ordered sets are modified, indicating an
invalid frame. Ordered sets EOF
N
(EOF Normal) and
EOF
T
(EOF Terminate) are modified to EOF
NI
(EOF
NormalInvalid).
Any ordered set can be sent or received. If the ordered
set desired is not in the predefined set of Fibre Channel
ordered sets, the user can create it using the "special"
ordered set commands (see Appendix B). For instance,
to send "K28.5, D0.0, D31.7, D0.0," the user would
send 8500FF00h on CTXD0..31 while holding CTXC0
high. When receiving this same "special" ordered set
Figure 4. Check CRC Mode TIming
BTXD0..9
D0
Dn
CRC
4 Bytes
SOF
D0
D1
Dn
CRC
SOF
CRC Computation
CTXD0..31
CTXC1
CTXC0
CTCXERR
EOF
Dn-1
EOF
Idle
TQ9303
6
For additional information and latest specifications, see our website: www.triquint.com
(which does not correspond to any predefined Fibre
Channel ordered set) the ENDEC will send the user the
same value, 8500FF00h, while holding CRXS0 high. It
is up the the user to examine the second, third, and
fourth bytes of "special" ordered sets to identify them.
8b/10b Encoder Block
The 8b/10b Encoder encodes 8-bit-wide data to 10-bit-
wide data to improve its transmission characteristics.
The 8b/10b coding scheme maintains the signal DC
balance by keeping the same number of ones and zeros
for easier receiver designs, provides good transition
density for improved clock recovery, and improves
error checking. It also forces the correct running
disparity when encoding line states, idles, or receiver-
ready ordered sets. Appendix A contains the lookup
tables for the 8b/10b coding scheme.
Clock Generator Block
The Clock Generator generates word, half-word, and
byte clocks required by other blocks in the Encoder. It
uses BTXCKIN (a byte clock) from the transmitter as a
reference clock. For example, using Fibre Channel data
rates, BTXCKIN runs at 106.25 MHz using FC1063,
53.125 MHz using FC531, and 26.5625 MHz using
FC266. The Clock Generator generates BTXCKOUT for
clocking BTXD0..9. It also generates CTXWREF, a word
clock used by the host to generate CTXCLK, which
clocks the host I/O registers. CTXCLK runs at
25.5625 MHz using FC1063, 13.28125 MHz using
FC531, and 6.640625 MHz using FC266.
Raw Mode Transmit
In Raw Mode Transmit where TXRAW is high for the
whole frame, the input data word bypasses the parity
check, ordered set generator, CRC, and 8b/10b, and is
directly converted to bytes of data. The word-to-byte
mapping of input to output is listed in Table 1. Note that
in raw mode, a "raw" word may be inserted into the
data flow at any time, although running disparity will be
forced negative and the word sync detector state
machine will reset.
Proprietary Link Mode
The PL_IDLE (Proprietary Link IDLE) input can be used
to simplify designs that do not have to conform to Fibre
Channel standards. In such designs the CTXC0 input is
driven low (that is, grounded) and the PL_IDLE pin is
used to distinguish data from nondata. The PL_IDLE
pin controls a bit logic in front of the input registers of
the CTXC0 and CTXD24..31 inputs. It was added to
make it easier for users who aren't concerned with the
Fibre Channel protocol, but simply want to control the
transmission of data without habing to mux control
information into their data paths in order to control the
CTXD24..31 pins for ordered set control.
On the rising edge of CTXCLK on the first cycle of
PL_IDLE going high, the input registers for CTXC0 and
CTXD24..31 are "jammed" with the value that would
make the ENDEC encode an EOFa. As long as PL_IDLE
is held high, these input registers are jammed with the
value that would make the ENDEC encode an IDLE
ordered set. If CTXC1 is low (check mode) CTXERR will
properly reflect the validity of CRC contained in the
user's data (assuming the user's data contains CRC), or
it can be ignored if no CRC is used. If CTXC1 is high
(generate mode), the ENDEC will insert CRC before
encoding the EOFa followed by IDLEs. This creates a
situation in which the user's data will begin as soon as
PL_IDLE is dropped (with no preceding SOF); but it
does not present a problem for the ENDEC, because the
CRC blocks in both Rx and Tx halves are initialized by
any ordered set. Thus, the IDLE ordered set that
preceeds the user's data is sufficient to ensure proper
CRC calculation.
TQ9303
7
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Table 1. Raw Mode I/O Mapping
Bit
ENCODE: Word to Bytes
DECODE: Bytes to Word
39
CTXC0
BTXD0
BRXD0
CRXS0
38
CTXP3
BTXD1
BRXD1
CRXP3
37
CTXD31
BTXD2
BRXD2
CRXD31
36
CTXD30
BTXD3
BRXD3
CRXD30
35
CTXD29
BTXD4
BRXD4
CRXD29
34
CTXD28
BTXD5
BRXD5
CRXD28
33
CTXD27
BTXD6
BRXD6
CRXD27
32
CTXD26
BTXD7
BRXD7
CRXD26
31
CTXD25
BTXD8
BRXD8
CRXD25
30
CTXD24
BTXD9
BRXD9
CRXD24
29
CTXC1
BTXD0
BRXD0
CRXS2
28
CTXP2
BTXD1
BRXD1
CRXP2
27
CTXD23
BTXD2
BRXD2
CRXD23
26
CTXD22
BTXD3
BRXD3
CRXD22
25
CTXD21
BTXD4
BRXD4
CRXD21
24
CTXD20
BTXD5
BRXD5
CRXD20
23
CTXD19
BTXD6
BRXD6
CRXD19
22
CTXD18
BTXD7
BRXD7
CRXD18
21
CTXD17
BTXD8
BRXD8
CRXD17
20
CTXD16
BTXD9
BRXD9
CRXD16
19
CTXRAWA
BTXD0
BRXD0
CRXS3
18
CTXP1
BTXD1
BRXD1
CRXP1
17
CTXD15
BTXD2
BRXD2
CRXD15
16
CTXD14
BTXD3
BRXD3
CRXD14
15
CTXD13
BTXD4
BRXD4
CRXD13
14
CTXD12
BTXD5
BRXD5
CRXD12
13
CTXD11
BTXD6
BRXD6
CRXD11
12
CTXD10
BTXD7
BRXD7
CRXD10
11
CTXD9
BTXD8
BRXD8
CRXD9
10
CTXD8
BTXD9
BRXD9
CRXD8
9
CTXRAWB
BTXD0
BRXD0
CRXS4
8
CTXP0
BTXD1
BRXD1
CRXP0
7
CTXD7
BTXD2
BRXD2
CRXD7
6
CTXD6
BTXD3
BRXD3
CRXD6
5
CTXD5
BTXD4
BRXD4
CRXD5
4
CTXD4
BTXD5
BRXD5
CRXD4
3
CTXD3
BTXD6
BRXD6
CRXD3
2
CTXD2
BTXD7
BRXD7
CRXD2
1
CTXD1
BTXD8
BRXD8
CRXD1
0
CTXD0
BTXD9
BRXD9
CRXD0
TRANSMISSION ORDER
FIRST
BYTE
FIRST SERIAL BIT IN TX/RX
SECOND
BYTE
THIRD
BYTE
LAST SERIAL BIT IN TX/RX
FOURTH
BYTE
TQ9303
8
For additional information and latest specifications, see our website: www.triquint.com
Decoder Section
The Decoder has several functional blocks:
10b/8b Decoder, Ordered Set Decoder, Word Sync
Detector, Line State Decoder, 32-bit CRC Checker,
Parity Generator, and Clock Generator.
The Decoder section has two modes of operation: the
Normal mode and Raw mode. In the Normal mode, the
Decoder section takes 10 bits of data from the Receiver
output, decodes it using 10b/8b, decodes ordered sets,
checks CRC, combines four bytes into a single word
output, and generates parity. In the Raw mode, the
Decoder section directly combines the bytes into
words, bypassing 10b/8b decoding, ordered set
decoding, CRC checking, and parity generation.
The following is the decode sequence data flow:
1. Byte Input
2. BytetoHalf-Word Conversion
3. 10b/8b Decoding
4. Ordered Set Decoding
5. Line State Decoding
6. Word Sync Generation
7. 32-Bit CRC Checking
8. Muxing between Ordered Set, Unchanged Input,
10b/8b Decoded Input, and Status Bits
9. Half-WordtoWord Conversion
10. Parity Generation
11. Word Output
When PL_IDLE is driven low, data words on CTXD0..31
are encoded just as in Fibre Channel operation. When
PL_IDLE is driven high, the TQ9303 encodes one EOFa
ordered set followed by IDLE ordered sets for as long
as PL_IDLE remains high.
The EOFa ordered set is used to ensure proper running
disparity. When using the PL_IDLE signal, IDLE
ordered sets do not force proper running disparity. It is
therefore necessary to transmit at least one word with
PL_IDLE low followed by at least one word with
PL_IDLE high in order to guarantee proper running
disparity.
Without proper running disparity, the receiver portion
of the TQ9303 may flag the IDLE ordered sets as
errors and prevent the word sync state machine from
reaching the synchronized state as long as the running
disparity is incorrect.
Without proper running disparity, the receiver portion
of the TQ9303 may flag the IDLE ordered sets as errors
and prevent the word sync state machine from
reaching the synchronized state as long as the running
disparity is incorrect.
The contents and parity of CTXD0..31 and CTXP0..3 are
ignored during the word cycles when PL_IDLE is held
high. If CTXC1 is low, then CRC checking will occur,
which may cause the TXCERR signal to indicate an
error, which can be ignored in proprietary designs. If
CTXC1 is driven high, then the TQ9303 will generate a
32-bit CRC word during the first word cycle of PL_IDLE
high. During the second word cycle of PL_IDLE high,
the EOFa will be encoded followed by IDLE ordered
sets. Therefore, at least two word cycles of PL_IDLE
high between data bursts must be provided when using
CRC generation (that is, CTXC1 high). When using CRC
generation, the CRXS1 signal is used to indicate CRC
errors. When not using the CRC, CRXS1 should be
ignored. For non-Fibre Channel designs making use of
the PL_IDLE input, the CRXSO output can be used to
distinguish received data from idle time.
Proprietary Link Mode (continued)
TQ9303
9
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Figure 5. Sync State Flow Diagram
Invalid Word
Two Consecutive
Valid Words
RESET or RAW Mode
Two Consecutive
Valid Words
Invalid Word
Three Ordered Sets
Without Errors
Invalid Word
Two Consecutive
Valid Words
STATE 0
Loss of Word Sync
WSYNC = 0
STATE 1
Acquired Word Sync
WSYNC = 1
STATE 2
1st Invalid Word
WSYNC = 1
STATE 3
2nd Invalid Word
WSYNC = 1
STATE 4
3rd Invalid Word
WSYNC = 1
Invalid Word
Invalid
Word
10b/8b Decoder Block
The 10b/8b Decoder decodes the 10-bit input
(BRXD0..9) into 8 bits, as defined by the Fibre Channel
8b/10b coding scheme. The 10b/8b Decoder drives the
RXERROR (Receiver ERROR) high whenever errors are
detected. There are three types of errors: invalid
characters, invalid running disparities, and special
characters that are not positioned in the most
significant byte of a word. When the 10b/8b Decoder
receives a BRXSYNC of 1, it identifies the input data
byte as a K28.5 character and realigns the data in the
higher order byte of the half word. In Fibre Channel,
K28.5 characters appear only in the most significant
byte of a valid generated parity word. RXERROR remains
high for the word cycle in which the error occurred.
Ordered Set Decoder Block
The Ordered Set Decoder decodes the ordered sets
from the 10b/8b Decoder output. It generates the
decoded ordered set, which is then fed into the mux
along with CRXS0. CRXS0 is a status signal which is
low for a data word and high for an ordered set. The
ordered set decoding table is included in Appendix B.
Word Sync Detector Block
The Word Sync Detector contains a state machine that
monitors the number of valid ordered sets and errors
received. The Word Sync Detector drives WRDSYNCN
low to indicate that word synchronization on the link
has been established. It drives WRDSYNCN high
when word synchronization has been lost.
Figure 5 illustrates how word synchronization is
established and lost. The state machine has five states:
State 0 Loss of Word Sync, State 1 Word Sync
Acquired, State 2 1st Invalid Word, State 3 2nd
Invalid Word, and State 4 3rd Invalid Word. Upon
RESET or Raw mode at State 0, the initial condition of
WRDSYNCN is high. If the Word Sync Detector
receives three consecutive ordered sets without errors,
it acquires word synchronization and moves to State 1,
where WRDSYNCN is driven low. If it receives an
invalid word while in State 1, it moves to State 2 (1st
Invalid Word). If the Word Sync Detector receives an
invalid word while in State 2, it moves to State 3 (2nd
Invalid Word). If, however, it receives two consecutive
valid words, it moves back to State 1. This logic applies
to State 3 and State 4. In State 4 (3rd Invalid Word) if
the Decoder receives an invalid word, it moves to
State 0 (Loss of Word Sync).
TQ9303
10
For additional information and latest specifications, see our website: www.triquint.com
Table 2. Line State Status Output
CRXS3
CRXS2
Line State Status
0
0
No State
0
1
Pending State
1
0
In State
1
1
Invalid Sequence
Table 3. Line State ID Output
CRXS5
CRXS4
Line State ID
0
0
NOS Non-Operational State
0
1
OLS Off-Line State
1
0
LR Link Reset
1
1
LRR Link Reset Response
Line State Decoder Block
The state machine that indicates line state status
simply looks for three consecutive line state primitives
(that is, three of a kind in a row) to achieve a particular
Fibre Channel line state. Line states are used in link
initialization protocol, as described in the Fibre Channel
specification (FC-PH). A subset of the ordered sets, line
states are Fibre Channel primitive sequences which
provide information regarding the condition of the link.
The following are the four line states:
Off-Line State (OLS) indicates either an internal
port failure or a transmitter power down/
diagnostics performance / initialization.
Non-Operational State (NOS) signals a link failure.
Link Reset (LR) recognizes the OLS and port reset
conditions.
Link Reset Response (LRR) recognizes a link reset.
These line states are defined in Appendix B. The Line
State Decoder generates CRXS2..3, the line state status
bits which advise the host as to the state of the Sync
State Machine, and CRXS4..5, the line state ID bits
which signal the occurrance of certain primitive
sequences. The status bits are shown in Tables 2 and 3.
32-Bit CRC Checker Block
The CRC Checker computes the 32-bit cyclic
redundancy check on the received data. The CRC Error
Status bit CRXS1 is driven high when an error is
detected. In Raw mode, CRC is not checked, and
CRXS1 is driven low.
Parity Generator Block
Four parity bits (CTXP0..3) are generated by the Parity
Generator. Each parity bit corresponds to a byte of
data, as follows: CRXP0 to CRXD0..7, CRXP1 to
CRXD8..15, CRXP2 to CRXD16..23, and CRXP3 to
CRXD24..31.
Control bit RXPMODE (Receive Parity MODE) alters the
normal meaning of CRXP3. RXPMODE low is the
normal mode, where CRXP3 generates parity for
CRXD24..31. With RXPMODE high, however, CRXP3
generates parity for CRXD24..31 and CRXS0. CRXS0 is
a control output that indicates whether CTXD0..31 is
data or an ordered set.
The parity bits follow odd parity convention, where it is
high if the number of ones is even and low if the
number of ones is odd.
In Raw mode, the Parity Generator does not generate
parity, and the output parity bits are mapped with the
input data as shown in Table 1.
Clock Generator Block
The Clock Generator generates word, half-word, and
byte clocks required by other blocks in the Decoder.
The Clock Generator uses the recovered clock, BRXCLK,
generated by the TQ9502 Receiver. For example, using
Fibre Channel data rates, BRXCLK (a byte clock) runs at
106.25 MHz using FC1063, 53.125 MHz using FC531,
and 26.5625 MHz using FC266.
TQ9303
11
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
The Clock Generator generates CRXCLK, a word clock,
which is used for clocking the host I/O registers. The
user may place the clock edge, CRXCLK, in four places
relative to the word input, thereby giving the user
control of setup and hold times. Clock edge placement
is selected via control pins RXCKPH0 and RXCKPH1
(Receiver ClocK PHase). CRXCLK runs at 26.5625 MHz
using FC1063 and 13.28125 MHz using FC531.
The Clock Generator also receives the BRXSYNC signal,
which is used for byte alignment. The Receiver drives
BRXSYNC high when detecting a K28.5 character.
Raw Mode Receive
In Raw Mode Receive where RXRAW is high for the
whole frame, the input data word bypasses the parity
check, ordered set generator, 32-bit CRC, and 8b/10b
encoder, and is directly converted to data words. The
byte-to-word mapping of data is listed in Table 1.
Figure 6. Pinout
TQ9303
CTXP3
CTXD31
CTXD30
CTXD29
CTXD28
CTXD27
CTXD26
CTXD25
CTXD24
VSS2
CTXP2
CTXD23
CTXD22
VSS3
CTXD21
CTXD20
CTXD19
CTXD18
CTXD17
VDD
CTXD16
CTXP1
CTXD15
CTXD14
CTXD13
CTXD12
CTXD11
CTXD10
CTXD9
VSS2
CTXD8
CTXP0
CTXD7
VDD3
CTXD6
CTXD5
CTXD4
CTXD3
CTXD2
CTXD1
CTXC0
CTXC1
CTXRAWA
CTXRAWB
CTXCERR
CTXPERR
TXPENN
PL_IDLE
CTXCLK
TSTMODE
CTXWREF
VSS1
TXPMODE
TXRAW
RXRAW
VSS3
RXPMODE
VSS2
RXCKPH1
RXCKPH0
VDD3
RESETN
VSS1
CRXCLK
VSS1
WRDSYNCN
RXERROR
CRXS5
CRXS4
VSS1
CRXS3
CRXS2
CRXS1
VDD
CRXS0
CRXP3
CRXD31
VSS1
CRXD30
CRXD29
CRXD3
VDD
CRXD4
CRXD5
VSS1
CRXD6
CRXD7
CRXP0
CRXD8
VSS1
CRXD9
CRXD10
CRXD11
VDD
CRXD12
CRXD13
VSS1
CRXD14
CRXD15
VSS2
CRXP1
CRXD16
VSS1
CRXD17
CRXD18
CRXD19
VDD
CRXD20
CRXD21
VSS1
CRXD22
CRXD23
CRXP2
CRXD24
VSS1
CRXD25
CRXD26
VDD
CRXD27
CRXD28
CTXD0
VSS1
BTXD0
BTXD1
BTXD2
VSS1
BTXD3
BTXD4
VDD
BTXD5
BTXD6
VSS1
BTXD7
BTXD8
BTXD9
VSS1
BTXCKIN
VSS1
BTXCKOUT
VDD
BRXCLK
VSS3
BRXD0
BRXD1
BRXD2
BRXD3
VDD3
BRXD4
BRXD5
BRXD6
BRXD7
VSS3
BRXD8
BRXD9
BRXSYNC
VDD
CRXD0
CRXD1
VSS1
CRXD2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Pin 1
TQ9303
12
For additional information and latest specifications, see our website: www.triquint.com
Table 4. Pin Names
Pin
Description
41
CRXD3
42
VDD
43
CRXD4
44
CRXD5
45
VSS
46
CRXD6
47
CRXD7
48
CRXP0
49
CRXD8
50
VSS
51
CRXD9
52
CRXD10
53
CRXD11
54
VDD
55
CRXD12
56
CRXD13
57
VSS
58
CRXD14
59
CRXD15
60
VSS
61
CRXP1
62
CRXD16
63
VSS
64
CRXD17
65
CRXD18
66
CRXD19
67
VDD
68
CRXD20
69
CRXD21
70
VSS
71
CRXD22
72
CRXD23
73
CRXP2
74
CRXD24
75
VSS
76
CRXD25
77
CRXD26
78
VDD
79
CRXD27
80
CRXD28
Pin
Description
81
CRXD29
82
CRXD30
83
VSS
84
CRXD31
85
CRXP3
86
CRXS0
87
VDD
88
CRXS1
89
CRXS2
90
CRXS3
91
VSS
92
CRXS4
93
CRXS5
94
RXERROR
95
WRDSYNCN
96
VSS
97
CRXCLK
98
VSS
99
RESETN
100
VDD
101
RXCKPH0
102
RXCKPH1
103
VSS
104
RXPMODE
105
VSS
106
RXRAW
107
TXRAW
108
TXPMODE
109
VSS
110
CTXWREF
111
TSTMODE
112
CTXCLK
113
PL_IDLE
114
TXPENN
115
CTXPERR
116
CTXCERR
117
CTXRAWB
118
CTXRAWA
119
CTXC1
120
CTXC0
Pin
Description
1
CTXD0
2
VSS
3
BTXD0
4
BTXD1
5
BTXD2
6
VSS
7
BTXD3
8
BTXD4
9
VDD
10
BTXD5
11
BTXD6
12
VSS
13
BTXD7
14
BTXD8
15
BTXD9
16
VSS
17
BTXCKIN
18
VSS
19
BTXCKOUT
20
VDD
21
BRXCLK
22
VSS
23
BRXD0
24
BRXD1
25
BRXD2
26
BRXD3
27
VDD
28
BRXD4
29
BRXD5
30
BRXD6
31
BRXD7
32
VSS
33
BRXD8
34
BRXD9
35
BRXSYNC
36
VDD
37
CRXD0
38
CRXD1
39
VSS
40
CRXD2
Pin
Description
121
CTXP3
122
CTXD31
123
CTXD30
124
CTXD29
125
CTXD28
126
CTXD27
127
CTXD26
128
CTXD25
129
CTXD24
130
VSS
131
CTXP2
132
CTXD23
133
CTXD22
134
VSS
135
CTXD21
136
CTXD20
137
CTXD19
138
CTXD18
139
CTXD17
140
VDD
141
CTXD16
142
CTXP1
143
CTXD15
144
CTXD14
145
CTXD13
146
CTXD12
147
CTXD11
148
CTXD10
149
CTXD9
150
VSS
151
CTXD8
152
CTXP0
153
CTXD7
154
VDD
155
CTXD6
156
CTXD5
157
CTXD4
158
CTXD3
159
CTXD2
160
CTXD1
TQ9303
13
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Table 5. Pin Descriptions
Symbol
I/O
# of I/O
Interface
Description
Pin Numbers
BTXCKIN
I
1
Transmitter
Takes clock from Transmitter to generate BTXCKOUT.
17
BTXCKOUT
O
1
Transmitter
Used by Transmitter to clock in BTXD0..9.
19
BTXD0..9
O
10
Transmitter
Data Output.
35, 7, 8, 10, 11, 1315
CTXWREF
O
1
Host
Reference Word Clock which can be used in signaling the
110
host to issue a CTXCLK.
CTXCLK
I
1
Host
Word Clock generated from CTXCLK to clock in/out host I/O
112
registers. The following signals are latched by CTXCLK:
CTXP0..3, CTXC0,1, CTXRAW, CTXPENN, CTXPMODE,
CTXPERR, CTXCERR.
CTXC0
I
1
Host
High indicates CTXD0..31 is an Ordered Set;
120
Low indicates data.
CTXC1
I
1
Host
High generates CRC; low checks CRC.
119
CTXD0..31
I
32
Host
Transmit data output (CTXD31 = MSB; CTXD0 = LSB).
1, 160155, 153-151,
149143, 141, 139135,
133, 132, 129122
CTXP0
I
1
Host
CTXD0..7 Odd Parity input.
152
CTXP1
I
1
Host
CTXD8..15 Odd Parity input.
142
CTXP2
I
1
Host
CTXD16..23 Odd Parity input.
131
CTXP3
I
1
Host
CTXD24..31 and optional CTXC0 Odd Parity input.
121
If TXPMODE is high, CTXP3 checks parity for
CTXD24..31 and CTXC0. If TXPMODE is low,
CTXP3 checks parity for CTXD24..31 only.
CTXRAWA
I
1
Host
Raw data bit 19.
118
CTXRAWB
I
1
Host
Raw data bit 9.
117
CTXPERR
O
1
Host
CTXPERR high indicates CTXD0..31 Parity Error.
115
CTXCERR
O
1
Host
CTXCERR high indicates CRC Error.
116
When in CRC Check mode, CTXC1 is low.
TSTMODE
I
1
Host
Normally GND. HIGH state used by vendor to monitor
111
delay and threshold.
TXRAW
I
1
Host
High selects Raw Transmit Data mode.
107
TXPENN
I
1
Host
Active Low Transmit Parity Enable; Tx checks Parity
114
when low.
TXPMODE
I
1
Host
If TXPMODE is high, CTXP3 generates parity for
108
CTXD24..31 and CTXC0. If TXPMODE is low,
CTXP3 generates parity for CTXD24..31 only.
PL_IDLE
I
1
Host
Proprietary link idle control
113
BRXCLK
I
1
Receiver
Driven by RXCLK. Clocks data from BRXD0..9.
21
BRXD0..9
I
10
Receiver
Receives RXD0..9 from Receiver.
2326, 2831, 33, 34
BRXSYNC
I
1
Receiver
SYNC.
35
CRXCLK
O
1
Host
CRXCLK latches CRXDO..31.
97
(Continued on next page)
TQ9303
14
For additional information and latest specifications, see our website: www.triquint.com
Symbol
I/O
# of I/O
Interface
Description
Pin Numbers
CRXD0..31
O
32
Host
Receive data output (CRXD31 = MSB; CRXD0 = LSB).
37,38,40,41,43,44,
46,47,49,5153,55,
56,58,59,62,6466,
68,69,71,72,74,
76,77,7982,84
CRXS0
O
1
Host
High indicates CRXD0..31 is an Ordered Set;
86
Low indicates data.
CRXS1
O
1
Host
CRC error flag; high indicates a CRC error.
88
CRXS2,3
O
2
Host
Line state status bits. State equivalent for CRXS3
89,90
and CRXS2 from left to right, respectively:
00 - No State 01 - Pending
10 - State Rec. 11 - Bad Seq.
CRXS4,5
O
2
Host
Line state ID bits.
92,93
CRXP0
O
1
Host
CRXD0..7 Odd Parity output.
48
CRXP1
O
1
Host
CRXD8..15 Odd Parity output.
61
CRXP2
O
1
Host
CRXD16..23 Odd Parity output.
73
CRXP3
O
1
Host
CRXD24..31 and optional CRXS01 Odd Parity output.
85
If RXPMODE is high, CRXP3 generates Parity for
CRXD24..31 and CRXS0. If RXPMODE is low,
CRXP3 generates Parity for CRXD24..31 only.
RXERROR
O
1
Host
Receive Error; high indicates invalid data from the Receiver.
94
RXRAW
I
1
Host
High selects Raw Receive Data mode.
106
WRDSYNCN
O
1
Host
Word Synchronization Status Flag;
95
Low indicates Synchronization aqcuired.
Can be connected to SYNCEN on TQ9502/GA9102 Receiver.
RXPMODE
I
1
Host
Receiver Parity mode. If RXPMODE is high, CRXP3
104
generates Parity for CRXD24..31 and CRXS0.
If RXPMODE is low, CRXP3 generates Parity for
CRXD24..31 only.
RXCKPH0,1
I
2
Host
CRXCLK Phase Select pin.
101,102
RESETN
I
1
Host
Active low.
99
VDD
--
--
--
+5 Volt supply.
9,20,27,36,42,54,67,
78,87,100,140,154
GND (V
SS
)
--
--
--
Ground.
2,6,12,16,18,22,32,39,
45,50,57,60,63,70,75,
83,91,96,98,103,105,
109,130,134,150
Table 5. Pin Descriptions (continued)
TQ9303
15
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
TTL Test Load, TLL Outputs
1360
2000
VDD
Table 8. DC Characteristics
Symbol
Description
Conditions
Min.
Typ.
Max.
Unit
V
OH
Output high voltage
V
DD
= Min, I
OH
= 4 mA, V
IN
= V
IH
or V
IL
3.6
V
V
OL
Output low voltage
V
DD
= Min, I
OL
= 4 mA, V
IN
= V
IH
or V
IL
0.37
V
V
IH
Input high level
Guaranteed input logical high voltage
2.0
V
for all inputs
V
IL
Input low level
Guaranteed input logical low voltage
0.8
V
for all inputs
I
IL
Input Leakage current
V
DD
= Max, V
IN
= 0.40V
150
400
A
Notes: Unless otherwise specified, these values apply over the recommended operating range.
Typical limits are: V
DD
= 5.0 V and T
A
= 25
C.
Input levels (V
IH
and V
IL
) are absolute values with respect to device ground, and all overshoots due to
system or tester noise are included.
V
IN
, the TTL input, can be high or low.
Table 6. Absolute Maximum Ratings
Parameter
Min.
Max.
Unit
Storage temperature
65
+150
C
Ambient temperature
55
+125
C
Supply voltage to ground
0.5
+7.0
V
DC input voltage
0.5
V
DD
+ 0.5
V
DC input current
30
+5
mA
Thermal resistance (
JC
)
5.6
C / W
Note:
Exceeding the absolute maximum ratings may damage the device.
Table 7. Operating Conditions
Parameter
Range
Unit
Supply voltage
+5
5%
V
Ambient temperature
070
C
Power @ 125 MHz
4.1
W
Power @ DC
0.3
W
Note:
Proper functionality is guaranteed under these conditions.
TQ9303
16
For additional information and latest specifications, see our website: www.triquint.com
CTXD(0..31),
CTXP(0..3),
CTXRAWA,
CTXRAWB,
CTXPENN,
CTXPMOD,
CTXC0,
CTXRAW,
PL_IDLE
CTXCERR,
CTXPERR
CTXC1
T8
T7
T6
T4
T5
T1
T2
T3
CTXCLK
Table 9. AC Characteristics--Transmit (CTX) Timing
Parameter
Description
Abs.Min.
Rel.Min.
Abs.Max.
Rel.Max.
Unit
T1
CTXCLK Pulse Width High
12
t + 4
3t 4
ns
T2
CTXCLK Pulse Width Low
12
t + 4
3t 4
ns
T3
CTXCLK Period
32
4t
4t
ns
T4
CTXD(0..31), CTXP(0..3), CTXRAWA,
1.9
ns
CTXRAWB, CTXPENN, CTXPMOD, CTXC0, and
CTXRAWtoCTXCLK
setup time
T5
CTXCLK
toCTXD(0..31), CTXP(0..3),
0.9
ns
CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD,
CTXC0, and CTXRAW hold time
T6
CTXC0 and CTXC1toCTXCLK
setup time
0.8
ns
T7
CTXCLK
toCTXC0 and CTXC1 hold time
2
ns
T8
CTXCLK
toCTXCERR and CTXPERR Output
2.5
15.5
ns
Notes:
"t" represents one (1) BTXCKIN period.
Minimum setup and hold times are based on a 30-pf load on all outputs and a 50% duty cycle on CTXCLK.
Figure 7. Transmit (CTX) Timing
TQ9303
17
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
BTXCKIN
BTXD(0..9)
BTXCKOUT
T12
T13
T9
T10
T11
Table 11. Transmit (BTX) Timing Formulas
t = 8 ns
t = 9.41 ns
t = 16 ns
t = 18.821 ns
Parameter
Formula
(125 MHz)
(106.25 MHz)
(62.5 MHz)
(53.125 MHz)
T12
d * t 1.94 ns
2.06 ns
2.76 ns
6.06 ns
7.47 ns
(1.8 ns min.)
(2.5 ns min.)
T13
(1 d) * t 1.42 ns
2.58 ns
3.28 ns
6.58 ns
7.99 ns
(3.4 ns min.)
(2.1 ns min.)
Note:
"d" represents one (1) BTXCKIN duty cycle, T9 / T11 or T9 / (T9 + T10). The calculations given above are made with d = 0.5 (50%).
When BTXCKIN has other than a 50% duty cycle (d <> 0.5), T
SETUP
and T
HOLD
are affected by the shift in clock edges. The rising edge
of BTXCKOUT is triggered by the falling edge of BTXCKIN; thus, if the BTXCKIN high time is 2 ns less than the BTXCKIN low time,
then 1 ns must be subtracted from the setup times given abore, and 1 ns must be added to the hold times given above.
Table 10. AC Characteristics--Transmit (BTX) Timing
(1)
Parameter
Description
Abs.Min.
Rel.Min.
Abs.Max.
Rel.Max.
Unit
T9
BTXCKN Pulse Width High
3.2
0.4t
0.6t
ns
T10
BTXCKIN Pulse Width Low
3.2
0.4t
0.6t
ns
T11
BTXCKIN Period
8
t
t
ns
T12
BTXD(0..9)-to-BTXCKOUT
setup time
(2)
(2)
(2)
(2)
T13
BTXCKOUT
-to-BTXD(0..9) hold time
(2)
(2)
(2)
(2)
Notes: 1. "t" represents one (1) BTXCKIN period.
2. See Table 11, "Transmit (BTX) Timing Formulas," below.
Figure 8. Transmit (BTX) Timing
TQ9303
18
For additional information and latest specifications, see our website: www.triquint.com
BRXCLK
BRXD(0..9),
BRXSYNC
T17
T18
T14
T15
T16
Table 12. AC Characteristics--Receive (BRX) Timing
Parameter
Description
Abs.Min.
Rel.Min.
Abs.Max.
Rel.Max.
Unit
T14
BRXCLK Pulse Width High
3.2
0.4t
0.6t
ns
T15
BRXCLK Pulse Width Low
3.2
0.4t
0.6t
ns
T16
BRXCLK Period
8
t
t
ns
T17
BRXD(0..9) and BRXSYNCtoBTXCKOUT
1.25
ns
setup time
T18
BRXCLK
toBRXD(0..9) and BRXSYNC
0.25
ns
hold time
Note:
"t" represents one (1) BRXCLK period.
Figure
Figure 9. Receive (BRX) Timing
TQ9303
19
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
CRXCLK
CRXD(0..31),
CRXP(0..3),
RXERROR,
WRDSYNCN
T22
T23
T19
T20
T21
Table 13. AC Characteristics--Receive (CRX) Timing
(1)
Parameter
Description
Abs.Min.
Rel.Min.
Abs.Max.
Rel.Max.
Unit
T19
CRXCLK Pulse Width High
13
2t 3
19
2t + 3
ns
T20
CRXCLK Pulse Width Low
13
2t 3
19
2t + 3
ns
T21
CRXCLK Period
32
4t
4t
ns
T22
CRXD*, CRXP*, and CRXS*toCRXCLK
(2)
(2)
(2)
(2)
setup time
T23
CRXCLK
toCRXD*, CRXP*,
(2)
(2)
(2)
(2)
and CRXS* hold time
Notes: 1. "t" represents one (1) BRXCLK period.
2. See Table 14, "Receive (CRX) Timing Formulas," below.
Table 14. Receive (CRX) Timing Formulas
t = 8 ns
t = 9.41 ns
t = 16 ns
t = 18.821 ns
Parameter
RXCKPH(1:0)
Formula
(125 MHz)
(106.25 MHz)
(62.5 MHz)
(53.125 MHz)
0:0
0.054t 0.94 ns
0.47 ns
0.39 ns
0.00 ns
0.16 ns
0:1
1.054t 0.94 ns
7.53 ns
9.02 ns
16.00 ns
18.99 ns
1:0
2.054t 0.94 ns
15.53 ns
18.43 ns
32.00 ns
37.81 ns
1:1
3.054t 0.94 ns
23.53 ns
27.84 ns
48.00 ns
56.63 ns
0:0
3.5t 0.07 ns
28.07 ns
33.01 ns
56.07 ns
65.95 ns
0:1
2.5t 0.07 ns
20.07 ns
23.59 ns
40.07 ns
47.12 ns
1:0
1.5t 0.07 ns
12.07 ns
14.18 ns
24.07 ns
28.30 ns
1:1
0.5t 0.07 ns
4.07 ns
4.77 ns
8.07 ns
9.48 ns
Figure 10. Receive (CRX) Timing
TQ9303
20
For additional information and latest specifications, see our website: www.triquint.com
Table A-1. Valid Data Characters
Data Byte Bits
Current
RD
Current
RD +
Name
HGF
EDCBA
1
abcdei
fghj
2
abcdei
fghj
2
D0.0
000
00000
100111
0100
011000
1011
D1.0
000
00001
011101
0100
100010
1011
D2.0
000
00010
101101
0100
010010
1011
D3.0
000
00011
110001
1011
110001
0100
D4.0
000
00100
110101
0100
001010
1011
D5.0
000
00101
101001
1011
101001
0100
D6.0
000
00110
011001
1011
011001
0100
D7.0
000
00111
111000
1011
000111
0100
D8.0
000
01000
111001
0100
000110
1011
D9.0
000
01001
100101
1011
100101
0100
D10.0
000
01010
010101
1011
010101
0100
D11.0
000
01011
110100
1011
110100
0100
D12.0
000
01100
001101
1011
001101
0100
D13.0
000
01101
101100
1011
101100
0100
D14.0
000
01110
011100
1011
011100
0100
D15.0
000
01111
010111
0100
101000
1011
D16.0
000
10000
011011
0100
100100
1011
D17.0
000
10001
100011
1011
100011
0100
D18.0
000
10010
010011
1011
010011
0100
D19.0
000
10011
110010
1011
110010
0100
D20.0
000
10100
001011
1011
001011
0100
D21.0
000
10101
101010
1011
101010
0100
D22.0
000
10110
011010
1011
011010
0100
D23.0
000
10111
111010
0100
000101
1011
D24.0
000
11000
110011
0100
001100
1011
D25.0
000
11001
100110
1011
100110
0100
D26.0
000
11010
010110
1011
010110
0100
D27.0
000
11011
110110
0100
001001
1011
D28.0
000
11100
001110
1011
001110
0100
D29.0
000
11101
101110
0100
010001
1011
D30.0
000
11110
011110
0100
100001
1011
D31.0
000
11111
101011
0100
010100
1011
D0.1
001
00000
100111
1001
011000
1001
D1.1
001
00001
011101
1001
100010
1001
D2.1
001
00010
101101
1001
010010
1001
D3.1
001
00011
110001
1001
110001
1001
D4.1
001
00100
110101
1001
001010
1001
D5.1
001
00101
101001
1001
101001
1001
D6.1
001
00110
011001
1001
011001
1001
D7.1
001
00111
111000
1001
000111
1001
D8.1
001
01000
111001
1001
000110
1001
D9.1
001
01001
100101
1001
100101
1001
D10.1
001
01010
010101
1001
010101
1001
D11.1
001
01011
110100
1001
110100
1001
D12.1
001
01100
001101
1001
001101
1001
D13.1
001
01101
101100
1001
101100
1001
D14.1
001
01110
011100
1001
011100
1001
D15.1
001
01111
010111
1001
101000
1001
D16.1
001
10000
011011
1001
100100
1001
D17.1
001
10001
100011
1001
100011
1001
D18.1
001
10010
010011
1001
010011
1001
D19.1
001
10011
110010
1001
110010
1001
D20.1
001
10100
001011
1001
001011
1001
D21.1
001
10101
101010
1001
101010
1001
D22.1
001
10110
011010
1001
011010
1001
D23.1
001
10111
111010
1001
000101
1001
D24.1
001
11000
110011
1001
001100
1001
D25.1
001
11001
100110
1001
100110
1001
D26.1
001
11010
010110
1001
010110
1001
D27.1
001
11011
110110
1001
001001
1001
D28.1
001
11100
001110
1001
001110
1001
D29.1
001
11101
101110
1001
010001
1001
D30.1
001
11110
011110
1001
100001
1001
D31.1
001
11111
101011
1001
010100
1001
D0.2
010
00000
100111
0101
011000
0101
D1.2
010
00001
011101
0101
100010
0101
D2.2
010
00010
101101
0101
010010
0101
D3.2
010
00011
110001
0101
110001
0101
D4.2
010
00100
110101
0101
001010
0101
D5.2
010
00101
101001
0101
101001
0101
D6.2
010
00110
011001
0101
011001
0101
Data Byte Bits
Current
RD
Current
RD +
Name
HGF
EDCBA
1
abcdei
fghj
2
abcdei
fghj
2
D7.2
010
00111
111000
0101
000111
0101
D8.2
010
01000
111001
0101
000110
0101
D9.2
010
01001
100101
0101
100101
0101
D10.2
010
01010
010101
0101
010101
0101
D11.2
010
01011
110100
0101
110100
0101
D12.2
010
01100
001101
0101
001101
0101
D13.2
010
01101
101100
0101
101100
0101
D14.2
010
01110
011100
0101
011100
0101
D15.2
010
01111
010111
0101
101000
0101
D16.2
010
10000
011011
0101
100100
0101
D17.2
010
10001
100011
0101
100011
0101
D18.2
010
10010
010011
0101
010011
0101
D19.2
010
10011
110010
0101
110010
0101
D20.2
010
10100
001011
0101
001011
0101
D21.2
010
10101
101010
0101
101010
0101
D22.2
010
10110
011010
0101
011010
0101
D23.2
010
10111
111010
0101
000101
0101
D24.2
010
11000
110011
0101
001100
0101
D25.2
010
11001
100110
0101
100110
0101
D26.2
010
11010
010110
0101
010110
0101
D27.2
010
11011
110110
0101
001001
0101
D28.2
010
11100
001110
0101
001110
0101
D29.2
010
11101
101110
0101
010001
0101
D30.2
010
11110
011110
0101
100001
0101
D31.2
010
11111
101011
0101
010100
0101
D0.3
011
00000
100111
0011
011000
1100
D1.3
011
00001
011101
0011
100010
1100
D2.3
011
00010
101101
0011
010010
1100
D3.3
011
00011
110001
1100
110001
0011
D4.3
011
00100
110101
0011
001010
1100
D5.3
011
00101
101001
1100
101001
0011
D6.3
011
00110
011001
1100
011001
0011
D7.3
011
00111
111000
1100
000111
0011
D8.3
011
01000
111001
0011
000110
1100
D9.3
011
01001
100101
1100
100101
0011
D10.3
011
01010
010101
1100
010101
0011
D11.3
011
01011
110100
1100
110100
0011
D12.3
011
01100
001101
1100
001101
0011
D13.3
011
01101
101100
1100
101100
0011
D14.3
011
01110
011100
1100
011100
0011
D15.3
011
01111
010111
0011
101000
1100
D16.3
011
10000
011011
0011
100100
1100
D17.3
011
10001
100011
1100
100011
0011
D18.3
011
10010
010011
1100
010011
0011
D19.3
011
10011
110010
1100
110010
0011
D20.3
011
10100
001011
1100
001011
0011
D21.3
011
10101
101010
1100
101010
0011
D22.3
011
10110
011010
1100
011010
0011
D23.3
011
10111
111010
0011
000101
1100
D24.3
011
11000
110011
0011
001100
1100
D25.3
011
11001
100110
1100
100110
0011
D26.3
011
11010
010110
1100
010110
0011
D27.3
011
11011
110110
0011
001001
1100
D28.3
011
11100
001110
1100
001110
0011
D29.3
011
11101
101110
0011
010001
1100
D30.3
011
11110
011110
0011
100001
1100
D31.3
011
11111
101011
0011
010100
1100
D0.4
100
00000
100111
0010
011000
1101
D1.4
100
00001
011101
0010
100010
1101
D2.4
100
00010
101101
0010
010010
1101
D3.4
100
00011
110001
1101
110001
0010
D4.4
100
00100
110101
0010
001010
1101
D5.4
100
00101
101001
1101
101001
0010
D6.4
100
00110
011001
1101
011001
0010
D7.4
100
00111
111000
1101
000111
0010
D8.4
100
01000
111001
0010
000110
1101
D9.4
100
01001
100101
1101
100101
0010
D10.4
100
01010
010101
1101
010101
0010
D11.4
100
01011
110100
1101
110100
0010
D12.4
100
01100
001101
1101
001101
0010
D13.4
100
01101
101100
1101
101100
0010
Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7CTXD0, in that order.
2. "abcdei, fghj" corresponds to BTXD9BTXD0, in that order; "a" is to be transmitted first, followed by "b," "c," . . . "j."
TQ9303
21
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Table A-1. Valid Data Characters (continued)
Table A-2. Valid Special Characters
Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7CTXD0, in that order.
2. "abcdei, fghj" corresponds to BTXD9BTXD0, in that order. "a" is to be transmitted first, followed by "b," "c," . . . "j."
Special
Current
RD
Current
RD +
Code Name
abcdei
fghj
(2)
abcdei
fghj
(2)
K28.0
001111
0100
110000
1011
K28.1
001111
1001
110000
0110
K28.2
001111
0101
110000
1010
K28.3
001111
0011
110000
1100
K28.4
001111
0010
110000
1101
K28.5
001111
1010
110000
0101
K28.6
001111
0110
110000
1001
K28.7
001111
1000
110000
0111
K23.7
111010
1000
000101
0111
K27.7
110110
1000
001001
0111
K29.7
101110
1000
010001
0111
K30.7
011110
1000
100001
0111
Data Byte Bits
Current
RD
Current
RD +
Name
HGF
EDCBA
1
abcdei
fghj
2
abcdei
fghj
2
D14.4
100
01110
011100
1101
011100
0010
D15.4
100
01111
010111
0010
101000
1101
D16.4
100
10000
011011
0010
100100
1101
D17.4
100
10001
100011
1101
100011
0010
D18.4
100
10010
010011
1101
010011
0010
D19.4
100
10011
110010
1101
110010
0010
D20.4
100
10100
001011
1101
001011
0010
D21.4
100
10101
101010
1101
101010
0010
D22.4
100
10110
011010
1101
011010
0010
D23.4
100
10111
111010
0010
000101
1101
D24.4
100
11000
110011
0010
001100
1101
D25.4
100
11001
100110
1101
100110
0010
D26.4
100
11010
010110
1101
010110
0010
D27.4
100
11011
110110
0010
001001
1101
D28.4
100
11100
001110
1101
001110
0010
D29.4
100
11101
101110
0010
010001
1101
D30.4
100
11110
011110
0010
100001
1101
D31.4
100
11111
101011
0010
010100
1101
D0.5
101
00000
100111
1010
011000
1010
D1.5
101
00001
011101
1010
100010
1010
D2.5
101
00010
101101
1010
010010
1010
D3.5
101
00011
110001
1010
110001
1010
D4.5
101
00100
110101
1010
001010
1010
D5.5
101
00101
101001
1010
101001
1010
D6.5
101
00110
011001
1010
011001
1010
D7.5
101
00111
111000
1010
000111
1010
D8.5
101
01000
111001
1010
000110
1010
D9.5
101
01001
100101
1010
100101
1010
D10.5
101
01010
010101
1010
010101
1010
D11.5
101
01011
110100
1010
110100
1010
D12.5
101
01100
001101
1010
001101
1010
D13.5
101
01101
101100
1010
101100
1010
D14.5
101
01110
011100
1010
011100
1010
D15.5
101
01111
010111
1010
101000
1010
D16.5
101
10000
011011
1010
100100
1010
D17.5
101
10001
100011
1010
100011
1010
D18.5
101
10010
010011
1010
010011
1010
D19.5
101
10011
110010
1010
110010
1010
D20.5
101
10100
001011
1010
001011
1010
D21.5
101
10101
101010
1010
101010
1010
D22.5
101
10110
011010
1010
011010
1010
D23.5
101
10111
111010
1010
000101
1010
D24.5
101
11000
110011
1010
001100
1010
D25.5
101
11001
100110
1010
100110
1010
D26.5
101
11010
010110
1010
010110
1010
D27.5
101
11011
110110
1010
001001
1010
D28.5
101
11100
001110
1010
001110
1010
D29.5
101
11101
101110
1010
010001
1010
D30.5
101
11110
011110
1010
100001
1010
D31.5
101
11111
101011
1010
010100
1010
D0.6
110
00000
100111
0110
011000
0110
D1.6
110
00001
011101
0110
100010
0110
D2.6
110
00010
101101
0110
010010
0110
D3.6
110
00011
110001
0110
110001
0110
D4.6
110
00100
110101
0110
001010
0110
D5.6
110
00101
101001
0110
101001
0110
D6.6
110
00110
011001
0110
011001
0110
D7.6
110
00111
111000
0110
000111
0110
D8.6
110
01000
111001
0110
000110
0110
D9.6
110
01001
100101
0110
100101
0110
D10.6
110
01010
010101
0110
010101
0110
D11.6
110
01011
110100
0110
110100
0110
D12.6
110
01100
001101
0110
001101
0110
D13.6
110
01101
101100
0110
101100
0110
D14.6
110
01110
011100
0110
011100
0110
D15.6
110
01111
010111
0110
101000
0110
D16.6
110
10000
011011
0110
100100
0110
D17.6
110
10001
100011
0110
100011
0110
Data Byte Bits
Current
RD
Current
RD +
Name
HGF
EDCBA
1
abcdei
fghj
2
abcdei
fghj
2
D18.6
110
10010
010011
0110
010011
0110
D19.6
110
10011
110010
0110
110010
0110
D20.6
110
10100
001011
0110
001011
0110
D21.6
110
10101
101010
0110
101010
0110
D22.6
110
10110
011010
0110
011010
0110
D23.6
110
10111
111010
0110
000101
0110
D24.6
110
11000
110011
0110
001100
0110
D25.6
110
11001
100110
0110
100110
0110
D26.6
110
11010
010110
0110
010110
0110
D27.6
110
11011
110110
0110
001001
0110
D28.6
110
11100
001110
0110
001110
0110
D29.6
110
11101
101110
0110
010001
0110
D30.6
110
11110
011110
0110
100001
0110
D31.6
110
11111
101011
0110
010100
0110
D0.7
111
00000
100111
0001
011000
1110
D1.7
111
00001
011101
0001
100010
1110
D2.7
111
00010
101101
0001
010010
1110
D3.7
111
00011
110001
1110
110001
0001
D4.7
111
00100
110101
0001
001010
1110
D5.7
111
00101
101001
1110
101001
0001
D6.7
111
00110
011001
1110
011001
0001
D7.7
111
00111
111000
1110
000111
0001
D8.7
111
01000
111001
0001
000110
1110
D9.7
111
01001
100101
1110
100101
0001
D10.7
111
01010
010101
1110
010101
0001
D11.7
111
01011
110100
1110
110100
1000
D12.7
111
01100
001101
1110
001101
0001
D13.7
111
01101
101100
1110
101100
1000
D14.7
111
01110
011100
1110
011100
1000
D15.7
111
01111
010111
0001
101000
1110
D16.7
111
10000
011011
0001
100100
1110
D17.7
111
10001
100011
0111
100011
0001
D18.7
111
10010
010011
0111
010011
0001
D19.7
111
10011
110010
1110
110010
0001
D20.7
111
10100
001011
0111
001011
0001
D21.7
111
10101
101010
1110
101010
0001
D22.7
111
10110
011010
1110
011010
0001
D23.7
111
10111
111010
0001
000101
1110
D24.7
111
11000
110011
0001
001100
1110
D25.7
111
11001
100110
1110
100110
0001
D26.7
111
11010
010110
1110
010110
0001
D27.7
111
11011
110110
0001
001001
1110
D28.7
111
11100
001110
1110
001110
0001
D29.7
111
11101
101110
0001
010001
1110
D30.7
111
11110
011110
0001
100001
1110
D31.7
111
11111
101011
0001
010100
1110
TQ9303
22
For additional information and latest specifications, see our website: www.triquint.com
Notes:
1. Don't care (any value).
2. Outputs for the data characters in the ordered set must be
encoded to the correct data values.
3. SOF Start-of-frame delimiter.
4. EOF End-of-frame delimiter
5. Encoded as EOF
NI
if TERR or PERR = 1.
6. Encoded as EOF
DTI
if TERR or PERR = 1.
7. Proper running disparity is forced before encoding
these ordered sets.
32-Bit Word Encoder Input
Ordered
31
30
29
28
27:24
23:16
15:8
7:0
Beg.
Ordered Set Output
Set
Cntl
Sig
SOF
EOF
Type
RD
SOFn1
3
0
0
1
0
0001
_
1
_
1
_
1
Neg
(K28.5D21.5D23.1D23.1)
SOFn2
0
0
1
0
0010
_
1
_
1
_
1
Neg
(K28.5D21.5D21.1D21.1)
SOFn3
0
0
1
0
0011
_
1
_
1
_
1
Neg
(K28.5D21.5D22.1D22.1)
SOFi1
0
0
1
0
0101
_
1
_
1
_
1
Neg
(K28.5D21.5D23.2D23.2)
SOFi2
0
0
1
0
0110
_
1
_
1
_
1
Neg
(K28.5D21.5D21.2D21.2)
SOFi3
0
0
1
0
0111
_
1
_
1
_
1
Neg
(K28.5D21.5D22.2D22.2)
SOFc1
0
0
1
0
1101
_
1
_
1
_
1
Neg
(K28.5D21.5D23.0D23.0)
SOFf
0
0
1
0
1000
_
1
_
1
_
1
Neg
(K28.5D21.5D24.2D24.2)
EOFn
4,5
0
0
0
1
0000
_
1
_
1
_
1
Neg
(K28.5D21.4D21.6D21.6)
Pos
(K28.5D21.5D21.6D21.6)
EOFt
5
0
0
0
1
0100
_
1
_
1
_
1
Neg
(K28.5D21.4D21.3D21.3)
Pos
(K28.5D21.5D21.3D21.3)
EOFdt
6
0
0
0
1
1100
_
1
_
1
_
1
Neg
(K28.5D21.4D21.4D21.4)
Pos
(K28.5D21.5D21.4D21.4)
EOFa
0
0
0
1
1001
_
1
_
1
_
1
Neg
(K28.5D21.4D21.7D21.7)
Pos
(K28.5D21.5D21.7D21.7)
EOFni
0
0
0
1
0001
_
1
_
1
_
1
Neg
(K28.5D10.4D21.6D21.6)
Pos
(K28.5D10.5D21.6D21.6)
EOFdti
0
0
0
1
1101
_
1
_
1
_
1
Neg
(K28.5D10.4D21.4D21.4)
Pos
(K28.5D10.5D21.4D21.4)
Idle
7
0
1
0
0
0000
_
1
_
1
_
1
Neg
(K28.5D21.4D21.5D21.5)
R-Rdy
7
0
1
0
0
0110
_
1
_
1
_
1
Neg
(K28.5D21.4D10.2D10.2)
NOS
7
0
1
0
0
1000
_
1
_
1
_
1
Neg
(K28.5D21.2D31.5D5.2)
OLS
7
0
1
0
0
1001
_
1
_
1
_
1
Neg
(K28.5D21.1D10.4D21.2)
LR
7
0
1
0
0
1010
_
1
_
1
_
1
Neg
(K28.5D9.2D31.5D9.2)
LRR
7
0
1
0
0
1011
_
1
_
1
_
1
Neg
(K28.5D21.1D31.5D9.2)
Undefined
1
0
0
0
0000
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.0DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0001
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.1DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0010
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.2DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0011
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.3DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0100
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.4DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0101
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.5DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0110
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.6DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
0111
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K28.7DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
1000
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K23.7DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
1001
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K27.7DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
1010
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K29.7DX.Y
B
DX.Y
C
DX.Y
D
)
Undefined
1
0
0
0
1011
(XY
B
)
2
(XY
C
)
2
(XY
D
)
2
(K30.7DX.Y
B
DX.Y
C
DX.Y
D
)
Table B-1. TQ9303 Encoding
TQ9303
23
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Table B-2. TQ9303 Decoding
Notes: 1. Valid for any unrecognized control sequence starting with "K28.5." Not valid for acquiring Word Sync.
2. BR
D
Beginning Running Disparity Negative.
3. BR
D
+ Beginning Running Disparity Positive.
32-Bit Decoded Output
Ordered Set
31:24
23:16
15:8
7:0
Input
Cntl
Sig
SOF
EOF
Type
BR
D
(2)
BR
D
+
(3)
SOFn1
0
0
1
0
0001
(B5
16
)
(37
16
)
(37
16
)
SOFn2
0
0
1
0
0010
(B5
16
)
(35
16
)
(35
16
)
SOFn3
0
0
1
0
0011
(B5
16
)
(36
16
)
(36
16
)
SOFi1
0
0
1
0
0101
(B5
16
)
(57
16
)
(57
16
)
SOFi2
0
0
1
0
0110
(B5
16
)
(55
16
)
(55
16
)
SOFi3
0
0
1
0
0111
(B5
16
)
(56
16
)
(56
16
)
SOFc1
0
0
1
0
1101
(B5
16
)
(17
16
)
(17
16
)
SOFf
0
0
1
0
1000
(B5
16
)
(58
16
)
(58
16
)
EOFn
0
0
0
1
0000
(95
16
)
(B5
16
)
(D5
16
)
(D5
16
)
EOFt
0
0
0
1
0100
(95
16
)
(B5
16
)
(75
16
)
(75
16
)
EOFdt
0
0
0
1
1100
(95
16
)
(B5
16
)
(95
16
)
(95
16
)
EOFa
0
0
0
1
1001
(95
16
)
(B5
16
)
(F5
16
)
(F5
16
)
EOFni
0
0
0
1
0001
(8A
16
)
(AA
16
)
(D5
16
)
(D5
16
)
EOFdti
0
0
0
1
1101
(8A
16
)
(AA
16
)
(95
16
)
(95
16
)
Idle
0
1
0
0
0000
(95
16
)
(B5
16
)
(B5
16
)
R_Rdy
0
1
0
0
0110
(95
16
)
(4A
16
)
(4A
16
)
NOS
0
1
0
0
1000
(55
16
)
(BF
16
)
(45
16
)
OLS
0
1
0
0
1001
(35
16
)
(8A
16
)
(55
16
)
LR
0
1
0
0
1010
(49
16
)
(BF
16
)
(49
16
)
LRR
0
1
0
0
1011
(95
16
)
(BF
16
)
(49
16
)
(K28.0-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0000
(XY
B
)
(XY
C
)
(XY
D
)
(K28.1-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0001
(XY
B
)
(XY
C
)
(XY
D
)
(K28.2-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0010
(XY
B
)
(XY
C
)
(XY
D
)
(K28.3-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0011
(XY
B
)
(XY
C
)
(XY
D
)
(K28.4-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0100
(XY
B
)
(XY
C
)
(XY
D
)
(K28.5-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
1
0
0
0
0101
(XY
B
)
(XY
C
)
(XY
D
)
(K28.6-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0110
(XY
B
)
(XY
C
)
(XY
D
)
(K28.7-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
0111
(XY
B
)
(XY
C
)
(XY
D
)
(K23.7-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
1000
(XY
B
)
(XY
C
)
(XY
D
)
(K27.7-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
1001
(XY
B
)
(XY
C
)
(XY
D
)
(K29.7-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
1010
(XY
B
)
(XY
C
)
(XY
D
)
(K30.7-DX.Y
B
-DX.Y
C
-DX.Y
D
)
1
0
0
0
1011
(XY
B
)
(XY
C
)
(XY
D
)
TQ9303
24
For additional information and latest specifications, see our website: www.triquint.com
Mechanical Specifications
Figure 11. TQ9303 PQFP Package Dimensions
(All dimensions are in millimeters)
0.65 TYP.
NON-ACCUM.
1.325 TYP.
0.3 +0.1
28.0 0.2
32.0 0.4
28.0
0.2
32.0
0.4
160
120
PIN 1
1
40
41
80
81
121
30.4 +0.4
0.45
4.45
MAX
3.6 +0.2
+0.2
-0.1
TQ9303
25
DA
T
ACOM
PRODUCTS
For additional information and latest specifications, see our website: www.triquint.com
Ordering Information
TQ9303-QC
Fibre Channel Encoder/Decoder
Supporting Products
TQ9501-MC
531/1063 Mbaud Transmitter
TQ9502-MC
531/1063 Mbaud Receiver
Additional Information
For latest specifications, additional product information,
worldwide sales and distribution locations, and information about TriQuint:
Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com
The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or
omissions. TriQuint assumes no responsibility for the use of this information, and all such information
shall be entirely at the user's own risk. Prices and specifications are subject to change without notice.
No patent rights or licenses to any of the circuits described herein are implied or granted to any third party.
TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.1.A
November 1997